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ABSTRACT 

We study pre-balanced dualizing complexes over noncommutative 
complete semilocal algebras and prove an analogue of Van den Bergh's 

theorem [VdB, 6.3]. The relationship between pre-balanced dualizing 

complexes and Morita dualities is studied. Some immediate applications 

to classical ring theory are also given. 
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0. In t roduc t ion  

The noncommutative dualizing complex in the sense of Yekutieli [Yel] is a very 

useful tool in studying the homological properties of noncommutative rings. For 
example, noncommutative versions of the Auslander Buchsbaum formula, Bass 
theorem, the no-holes theorem can be proved by using dualizing complexes (see 

[Jol, Jo2, Jo3] in the graded case, and [WZ1, WZ2, WZ3] in the ungraded case). 

Other applications of dualizing complexes can be found in the work of Yekutieli 

[Yel, Ye2, Ye3, YZ1, YZ2]. 

The dualizing complex is equivalent to the cotilting bimodule complex defined 
by Miyachi in [Mi], where he studied Morita duality theory for derived categories. 

The main existence theorem for dualizing complexes is due to Van den Bergh 
[VdB, 6.3]. Van den Bergh's result was generalized from the graded case to the 
complete local case in [WZ2] and [Ch]. 

The dualizing complexes constructed by Van den Bergh's method have good 

properties such as bifiniteness and Cdim-symmetry [Theorem 1.5], which are im- 

portant in studying some other ring-theoretic properties. Pre-balanced dualizing 

complexes [Definition 1.6] appear naturally in various ways and the existence of 

these is proved for several classes of algebras. The main purpose of this paper 

is to show that every pre-balanced dualizing complex over a complete semilocal 

ring is equivalent to one constructed by Van den Bergh's method. Consequently, 
such dualizing complexes have lots of good properties. 

THEOREM 0.1: Let A be a left noetherian algebra and B be a right noetherian 

algebra. Suppose A and B are semilocal and complete with respect to their 

Jacobson radicals. Let R be a pre-balanced dualizing complex over (A, B).  Then 

the following assertions hold. 

(1) There is a Morita duality between A and B induced by R. 

(2) A and B ~ have finite cohomological dimension and satisfy the left X condi- 

tion. 

(3) R is Cdim-symmetric. 

(4) I rA  and B are noetherian and satisfy the X condition, and i f  A i m  is weakly 

symmetric, then R is bifinite. 

A basic ingredient in Van den Bergh's construction is Morita duality, which 
is a noncommutative version of Matlis duality. We prove part (1) by using 

truncated Morita dualities between the artinian algebras A i m  n and B / n  n. Here 
m and n are the Jacobson radicals of A and B respectively. This idea was 

first used by Jategaonkar in [Ja]. Other parts follows from the local duality 

formula [Proposition 3.4] and results in [WZ2] and [Ch]. 
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Jategaonkar also showed that every noetherian complete semilocal algebra A 

with A/ra finite dimensional is Morita self-dual [Ja, 2.7]. This allows us to show 

an analogue of Van den Bergh's result [VdB, 6.3] and Yekutieli's result [Yel, 

4.10]. 

THEOREM 0.2 ([Ch]): Let A be a complete noetherian algebra with Jacobson 

radical m such that A/m is finite dimensional over the base field. Then the 

following are equivalent: 

(1) A has a pre-balanced dualizing complex. 

(2) A has a balanced dualizing complex. 

(3) A satisfies the )C condition and has finite left and right cohomological 

dimension. 

The definition of a balanced dualizing complex is given in Definition 3.7 for 

the algebras which appear in Theorem 0.2. We have at tempted to define the 

balanced condition for the algebras which appear in Theorem 0.1, but it seems 

that there is no way to define the balanced condition in general. Theorems 0.1 

and 0.2 suggest that the pre-balanced condition is a good replacement for the 

balanced condition. 

Theorems 0.1 and 0.2 have some immediate consequences. Note that not every 

noetherian semilocal complete ring has a Morita duality. Also, it is unknown 

if every noetherian semilocal complete PI ring is Morita self-dual. The next 

corollary gives a criterion for the existence of Morita self-duality. 

COROLLARY 0.3: Every AS-Gorenstein noetherian complete semilocal algebra is 

Morita self-dual. 

The property of Cdim-symmetry is crucial in the proof of the following 

corollary, which is an analogue of a result of Yekutieli's [YZ2, 6.23]. It is still an 

open question whether an AS-Gorenstein noetherian local ring has an artinian 

fraction ring. 

COROLLARY 0.4: IrA is an Auslander Gorenstein complete local noetherian ring, 

then A has a QF artinian fraction ring. 

The following corollary is useful for studying the structure of the dualizing 

complex. See [YZ4] for some details. 

COROLLARY 0.5: Let A be a noetherian complete algebra with 3acobson radical 

m such that A/m is finite dimensional over the base field. Suppose that A has a 

balanced dualizing complex RA. If B is a factor ring of A, then B has a balanced 
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dualizing complex RB and 

RB ------- RHomA(B, RB) ~ RHOmAo (B, RA) 

in D(A | A~ 

In Section 1, we review some basic definitions concerning dualizing complexes 

and Morita duality. Section 2 contains some results about Morita duality. We 

prove Theorems 0.1 and 0.2 in Section 3 and prove Corollaries 0.3 and 0.4 in 

Section 4. In Section 5, we study the behavior of Morita duality and dualizing 

complexes under finite extensions. The proof of Corollary 0.5 is given in Section 

5. 

1. D e f i n i t i o n s  a n d  p r e v i o u s  re su l t s  

In this section we will review some definitions about dualizing complexes and 

other definitions related to Van den Bergh's construction in the complete semi- 

local case. We refer to [Ha] for basic notions about complexes and derived 

categories. 

Throughout the paper, we fix a base field k and all objects will be assumed to 

be defined over k. Let A be an algebra. The opposite ring of A is denoted by A ~ 

Unless otherwise stated, we will work with left modules. We say an A-module is 

f in i te  if it is finitely generated over A. 

Let D(A) (Db(A), D+(A) and D-(A) respectively) denote the derived cat- 

egory of (bounded, bounded below, bounded above, respectively) complexes of 

A-modules. Let Dr(A) denote the derived category of complexes of A-modules 

with finite cohomology. The noncommutative version of a dualizing complex was 

introduced by Yekutieli. 

Definition 1.1 ([Yell [YZ2]): Let A be a left noetherian algebra and B be a right 

noetherian algebra. An object R C Db(A | B ~ is called a dua l iz ing  c o m p l e x  

o v e r  (A, B) if it satisfies the following three conditions: 

(1) R has finite injective dimension over A and B ~ 

(2) R has finite cohomology over A and B ~ 

(3) The canonical morphisms B ~ R HomA (R, R) and A ---4 R Homso (R, R) 

are isomorphisms in D(B | B ~ and D(A | A ~ respectively. 

When A = B, we say that R is a dua l iz ing  c o m p l e x  ove r  A. 

When we say that R is a dualizing complex over (A, B), we will assume 

implicitly that A is left noetherian and B is right noetherian. 
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Van den Bergh proved the following remarkable theorem about the existence 

of dualizing complexes in the graded case. 

THEOREM 1.2 ([VdB, 6.3]): Let A be a noetherian connected graded algebra. 
Then A has a balanced dualizing complex if and only irA satisfies the )~ condition 
and has finite left and right eohomological dimension. 

The terminology used above is defined in [Yel] and [VdB]. We will review the 

ungraded versions of this terminology only, since we are primarily interested in 

complete semilocal rings. 

The Jacobson radical of A is denoted by m. We say that A is semilocal  if 

A/m is a semisimple artinian ring. Left (or right) artinian rings are semilocal. 

Let (A, m) be a left noetherian semilocal ring and let A0 = A/m. We say 

that A satisfies the left  X cond i t i on  if Ext~(Ao, M) is of finite length as an 

A0-module for every i and every finite A-module M. The right X condition is 

defined similarly. If moreover A is noetherian, we say that A satisfies the X 

cond i t i on  when A satisfies the left and the right X condition. Stafford showed 

that noetherian semiloeal PI algebras satisfy the )C condition [SZ1, 3.5]. However, 

not every noetherian local algebra satisfies X [SZ2, 2.3] [WZ1, 9.4]. 

For any A-module M, the m-tors ion func to r  I~m is defined to be 

Fro(M) = {x e M[ m~x = 0, for n >> 0}. 

The derived functor RFm is defined on the derived category D+(A). We define 

the i th  local cohomology  of X C D +(A) to be 

Him (X) -- R~rm(x).  

The local cohomologica l  d i m e n s i o n  of an A-module M is defined to be 

lcd(M) = sup{i] H~(M) r 0}. 

The cohomologica l  d i m e n s i o n  of A (or of Fro) is defined to be 

cd(A) = sup{Icd(M)l for all A-modules M}. 

Obviously, Fm (M) = lim HOmA (A/ra n, M), which implies that 

Him (X) = lira Ext~ (A/m ~, X) 

for all X E D+(A). Since H~m commutes with direct limits, we have 

cd(A) = sup{lcd(M)l for all finite A-modules M}. 
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If cd(A) is finite, then cd(A) = lcd(AA). 
There are two basic ingredients in Van den Bergh's construction [VdB]. One 

is local cohomology defined above. The other is graded Matlis duality. The 

ungraded version of Matlis duality is Morita duality, which we now review. 

Let B be another algebra and let AEB be an (A, B)-bimodule. We say that E 

induces a M o r i t a  dua l i t y  between A and B if 

(1) AE and EB are injective cogenerators in the categories of left A-modules 

and right B-modules, respectively; 

(2) the canonical ring homomorphisms A -+ End EB and B ~ --+ End AE are 

isomorphisms. 

In this case we say that A is lef t  M o r i t a  and B is r igh t  M o r i t a ,  and that A 

is M o r i t a  dua l  to  B (or A and B are in M o r i t a  dua l i ty ) .  If A = B, then A 

is Morita self-dual, or has a Morita self-duality. We refer to [AF, Xu] for some 

basic properties of a Morita duality. 

Since a Morita duality is a duality between categories of modules and a dual- 

izing complex induces a duality between derived categories, a dualizing complex 

can be viewed as a generalization of a Morita duality [Mi]. In fact if A and B 

are local and artinian, every dualizing complex is given by a Morita duality and 

a complex shift [WZ2, 3.7]. 

Graded Matlis duality (i.e., graded vector space duality) exists trivially. How- 

ever, not every two-sided artinian algebra is left Morita [Xu, 2.9]. Some criteria 

for the existence of Morita dualities for artinian rings were worked out by Azu- 

maya, Fuller, Jategaonkar, Morita, Xue and others. See [AF, Xu] for their results. 

With an extra condition on A/m, a left artinian ring A is left Morita if and 

only if A is artinian [Proposition 1.3]. A left artinian algebra A is lef t  weak ly  

s y m m e t r i c  if 

[LWS] for every B and every two-sided artinian bimodule AMB and 

every left. artinian A-module AN, HomA(M, N) is a left B-module 

of finite length. 

Right weak symmetry for right artinian algebras is defined similarly. If A is 

artinian, we say that A is weak ly  s y m m e t r i c  if A is left and right weakly 

symmetric. It is easy to check that this definition of weak symmetry is equivalent 

to the definition given in [WZ1, WZ2]. By [WZ1, 7.3 and 7.4] artinian PI algebras 

and stratiform simple artinian algebras are weakly symmetric. The stratiform 

simple artinian algebra was introduced by Schofield in [Sc]. Tile Weyl skew fields 

and division algebras of skew polynomial rings are stratifornl. 
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PROPOSITION 1.3: Suppose that A is left artinian and that A/m is weakly sym- 
metric. Then the following are equivalent. 

(1) A is left Morita. 
(2) A is right Morita. 

(3) A is artinian. 

Proof: (1) ~ (3) This follows from [WZ1, 7.5]. 

(3) ~ (1) In this case m/m 2 is artinian on both sides. The weak symmetry 

implies that HOmA(Am/m2,A A/m) is of finite length. By [Xu, 11.3], A is left 

Morita. In this implication we only use left weak symmetry of A. 

Similarly (2) is equivalent to (3). | 

The following partial converse is easy to prove: Let A0 be a semisimple artinian 

algebra. If every artinian algebra A with A/m = Ao is left Morita, then A0 is 
left weakly symmetric. 

The next example shows that Proposition 1.3 does not hold when A/m is not 
weakly symmetric. 

Example 1.4: [AF, Exercise 24.9]. Let C c D be division rings such that Dc is 

finite dimensional and cD is not (see [Co]). Let 

A = ( D  D )  
0 C " 

Then A is left and right artinian but not left Morita. Both A/rn and D are not 
left weakly symmetric because HomD(DDc,D D) is not a finite right C-module 
[SZ1, 3.1]. 

The next result was proved in [WZ2, 0.1]. A similar result appeared in [Ch]. 

THEOREM 1.5: Let ( A, m) and ( B, n) be complete noetherian semilocal algebras 
and tet AEu be a bimodule which induces a Morita duality between A and t3. 
Suppose that 

(i) A and B ~ ha~w finite cohomological dimension, 

(ii) 

(iii) 

Then 

(1) 

(2) 

A and B satisfy the (left and right) ~ condition, and 

Ao = A/m is weakly symmetric. 

R := HomA(RPm(A),E) is' isomolphic 
D(A ~ B~ 

R is a dualizing complex over (A, B); 

to HomBo(RF,o(B) ,E)  in 
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(3) R is bifinite, Cdim-symmetric and pre-balanced. 

The proof of this was similar to the proof of [VdB, 3.6]. Some terms in part 

(3) need to be defined. Let R be a dualizing complex over (A, B) and let M be 

an A-module. The g rade  (or j - n u m b e r )  of M with respect to R is 

j (M)  = inf(q I Ex t , (M,  R) r 0}. 

The grade of a B~ is defined similarly. The canonica l  d i m e n s i o n  with 

respect to a dualizing complex R is defined to be 

CdimM -- - j ( M )  

for all finite A- (or B ~ modules M. 
A dualizing complex R over (A, B) is called Cdim-symmet r i c  if for every 

(A, B)-bimodule M finite on both sides, one has CdimAM = CdimMs.  A dual- 

izing complex R over (A, B) is called bif ini te  if the following conditions hold: 

(1) for every A-bimodule M finite on both sides, Extq4(M, R) is finite on both 

sides; 

(2) the same holds after A and B ~ are exchanged. 

The next notion is a central object of this paper. 

Definition 1.6 ([Yel] [WZ2]): A dualizing complex R over (A,B) is pre- 

ba lanced  if 
(1) for every simple A-module S, Exti4(S, R) = 0 for a l l / r  0 and Ext~ R) 

is a simple B~ 
(2) the same statement holds after A and B ~ are exchanged. 

To end this section we show that the pre-balanced condition is automatic in 

certain cases, which suggests that this condition is natural. Recall from [SZ1, 

3.5] that every noetherian PI semilocal algebra satisfies the X condition so the 

next proposition applies in particular to such algebras. 

PROPOSITION 1.7: Let A and B ~ be noetherian local algebras satisfying the left 

X condition and let R be a dualizing complex over (A, B). Then a complex shift 

of R is pre-balanced. 

Proof: First, we show that Ext~4(A/m, R) is a finite bimodule. It follows from 

properties of the dualizing complex that Ext~4(A/m, R) is a finite B~ It 

remains only to show that it is finite as an A-module, so we may as well forget 

the B~ on R. We will show that if X E DbI(A), then Ext~4(A/m, X) 

is a finite A-module. By the long exact sequence and induction on the length 
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of X, one may reduce to the case that X is a finite A-module in which case the 
assertion is precisely the left X condition. 

Let S be the simple A-module and T be the simple B~ Let 

a = max{i I Ext~4(S,R) r 0}, b = rain{i[ Ext~4(S,R) ~ 0} 

and 

c = max{i I Ext~o(T,R)  r 0}, d = min{i] Ext~o(T,R)  # 0}. 

It follows from the induction that, for any nonzero A-module M of finite length 

and any nonzero B~ N of finite length, we have 

a = max{i] Ex t~ (M,R)  ~ 0}, b = min{i] Ex t~ (M,R)  r 0} 

and 
c = max{i I Ext~o (N, R) # 0}, d = min{i] Ext~o (N, R) r 0}. 

We saw in the first paragraph that Ext~ (A/m, R) is finite. Since Ext i (A/m, R) 
is an A/m-module, it is an A-module of finite length. By Lenagan's lemma [GW, 

7.10], it is also of finite length as a B~ Its summand Ex t , (S ,  R) is thus 

also a B~ of finite length. By the definitions of a, b, c, d we see that 

Ext~o (Ext,4 (S, R), R) ~ 0 

= (a,c), (a,d), (b,c) and (b,d). Consider the convergent spectral for (i,j) 
sequence 

E2p,q := ExtP(Extq(s, R), R) ==~ S 

[YZ2, 1.7]; we see that all possible nonzero terms in the E2-pages are in the 
rectangle bounded by the four corner vertices (a, c), (a, d), (b, c) and (b, d). Since 
the boundary maps at vertices (a, d) and (b, c) are zero, the E2-terms at these two 
vertices will survive in the the E~-page.  Since the spectral sequence converges, 

the only possibility for this to happen is when a = b --- c = d. After shifting R, 

we may a s s u m e a = b =  c = d = 0 .  Hence Ext~ (S, R) = 0  for a l l i r  This 
implies that Ex t~  R) is exact on modules of finite length. Finally, the spectral 
sequence 

ExtP(Extq(M, R), R) ~ M 

shows that Ext~ - ,  R) induces a duality between the category of finite length A- 

modules and the category of finite length B~ Therefore Ext~ R) -~ T. 

By symmetry, the same statement holds for T. Thus R is pre-balanced. | 
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2. Truncated  Mor i ta  dual i t ies  

In this section we recall some results due to M/iller and Jategaonkar, which play a 

key role in constructing Morita dualities for algebras with pre-balanced dualizing 

complexes. 

Let A and B be two algebras with ideals m c A and n C B. Assume that  A/m 
and B/n are semisimple artinian. Suppose that  for every n, 

(1) A/m ~ is left artinian and B/n n is right artinian; 

(2) there is a Morita duality between A/m '~ and B/an; 
(3) the Morita duality between A/m n-1 and B/a n-1 is the restriction of the 

Morita duality between A/m n and B/n% 
Let E ~ be an (A/m ~, B/n~)-bimodule which induces the Morita duality. Hence 

E ~ is artinian on both sides. We call {(A/m ", B/n n, En)ln C iN} a s y s t e m  o f  

t r u n c a t e d  Mor i ta  dualit ies.  

For any n, there are two contravariant functors 

F ~ := HOmA/m~(-,E n) and G ~ := Hom(B/n~)o(-,E~), 

which give rise to a duality between the category of artinian left A/mn-modules 
and the category of artinian right B/n'~-modules. 

Define the essential length of an artinian module as follows: 

el(M) = 0 if M = O, 

el(M) = 1 if M = soc(M) where soc(M) is the sum of all simple submodules 

of M,  and 

el(M) = el(M/ soc(M) ) + 1. 
Note that  an m-torsion A-module M is an A/mt-module if and only if el(M) < t. 

LEMMA 2.1: There is a bimod~lle embedding E n -4 E n+l such that the image 
is 

HomA/m~+t (A/m n, E n+l ) = Hom(B/,~+~ )o (B/n n, En+I). 

Proof: If AEB defines a Morita duality between A and B, then the lattices of 

the ideals of A and B are isomorphic [AF, 24.6(1)]. By the proof of [AF, 24.6(1)] 

(see Lemma 5.7), if I is an ideal of A and J is the corresponding ideal of B, then 

A/ I  and B / J  are Morita dual via the bimodule 

HomA(A/I, E) = HomBo (B/J, E). 

Applying this statement to (A/m'~+~,B/n'~+I,En+I), we see that  the ideal 

mt /m n+l corresponds to nt/n n+l for t < n because duality preserves essential 
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length. Furthermore, the bimodule inducing the Morita duality between A/ra t 

and B i n  t is 

N := HOmA/m~+~ (A/ra t, E n+l) = HOm(B/,n+~ )o ( B i n  t, En+l).  

Since E n is induced from E n+l, there is a right B/n~-module isomorphism 

7M : HomA(M, E ~) ==- HomA (M, E "+1) 

for all A/ra ' -modules M. If M = A/ra n, then 7M induces an isomorphism from 

E~ -+ NB. Since 7 is natural, this is also A/ran-linear. | 

By Lemma 2.1, we have a direct system of bimodules {E~l n >_ 0}. Define 

E = l i m e  ~. For simplicity we identify E n with its image in E,  so E n is a 
_-. .+ 

subbimodule of E. I r E  n C E is as in Lemma 2.1, we call {E"  I n > 0} a s y s t e m  

of  t r u n c a t e d  in jec t ive  modu le s .  The completions of A and B are defined to 

be fi, = l imA/ra" and /~ = l i m B / n  n respectively. Note that  E is a bimodule 

over (A, B) and over (A,/~). 

LEMMA 2.2: Let E = l imE n. Then H o m A ( E , E )  = H o m A (E ,E  ) = B and the 

equality also holds when A and B ~ are exchanged. 

Proof: Since E n induces a Morita duality between A/ra n and B / a  n, 

B / n  n = HomA(E n, E n) = HomA(E n, E).  

Now the identity follows from the formula Horn(l imE n, - )  = li,__mHom(E n, - ) .  

I 

Note that the lattice of A-submodules of E is identical with the lattice of 

A-submodules of E.  The following is a simplified version of the main result in 

[Ja]. 

THEOREM 2.3 ([Ja, 2.2]): Let A be a left noetherian complete semilocal 

algebra and B a complete right noetherian semilocal algebra. Suppose that 

{(A/ra n, S/n n, En)}. is a system of truncated Morita dualities: then (A, B, E) 

is a Morita dualitt: In particular, E is artinian on both sides. 

Jategaonl~r also strengthens a result of Miiller [Mu, 8] as follows. 

THEOREM 2.4 ([Ja, 2.4] [Mu, 8]): Let A be a left noetherian complete semiloc~l 

algebra, AE be an injective cogenerator with finite essential socle, and B = 

End(AE). Then the following conditions are equivalent: 
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(1) A is left Morita. 

(2) AE is artinian. 

(3) B is right noetherian. 

COROLLARY 2.5: Let A be a left noetherian complete semilocal algebra with 

A / m  finite dimensional Let E n = Homk(A/m ~, k) and E = l imE% 
----4 

(1) AE is artinian i f  and only i rA  is right noetherian. 

(2) If  A is right noetherian, then E is an artinian injective cogenerator for 

A-modules and it induces a Morita self-duality of A. 

Proo~ (1) follows from Theorem 2.4. (2) follows from [Ja, 2.2 and 2.7]. I 

3. P r e - b a l a n c e d  dual iz ing  complexes  

The aim of this section is to prove Theorems 0.1 and 0.2. As usual, A and B 

denote semilocal rings with Jacobson radicals m and n respectively. We will use 

the truncated Morita dualities given in the previous section. The following is a 

key proposition. 

PROPOSITION 3.1: Let A and B be semilocal algebras. I f  R is a pre-balanced 

dualizing complex over (A, B), then the functors 

{(Ext~ - ,  R)IA/m., Ext~ ( - ,  R)IBI..)] n > 0} 

induces a system of truncated Morita dualities. 

I f  moreover A and B are complete, then 

R r  (R) ~ H ~  ~ H ~ (R) ~ a r  (R) m ~ ~ o ~ n o . 

Further, the Morita duality between A and B induced by the limit of the above 

system is given by the bimodule H~ ~ H~ (R). 

Proof'. Let el be the essential length defined before Lemma 2.1. Note that an 

artinian A-module M is an A/ran-module if and only if el(M) < n. 

By definition, if AM is simple, then Ext~a(M , R) is B~ So if el(M) --- 

1, then e l (Ext~ = 1. By induction and the fact Ext~ is exact 

on modules of finite length, Ext~ - ,  R) induces a duality between finite A / m  n- 

modules and finite (B/a'~)~ Therefore the first statement follows. 

We now assume A and B are complete. Observe first that RFm(R) and 

RF,o (R) have nonzero cohomology in cohomological degree 0 only, since R is pre- 

balanced. The pre-balanced condition also shows that HI (R)  is right n-torsion 
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and H~o(R) is m-torsion for every i. By [WZ2, 2.6 and 2.7], RF~(R) ~ RFno(R) 
as (A, B)-bimodule complexes. Taking 0-th cohomology, we find that  

H~  ~ n ~ (R) o . 

For the final statement note that the system of truncated Morita dualities is 

induced by the bimodules 

E n = Ext ~ (d/m n, R) ~- Ext~o (B/n n, R). 

By Jategaonkar's theorem (see Theorem 2.3), 

l imE n = H~ ~ H ~ (R) 

induces the desired Morita duality. | 

Remark 3.2: In [Yel, 4.1], Yekutieli introduced the notion of a balanced dual- 

izing complex for a noncommutative graded algebra. There is an obvious gener- 

alization of his definition to our setting. Suppose A and B are Morita dual via a 

bimodule E. A dualizing complex is said to be b a l a n c e d  w i t h  r e s p e c t  t o  E if 

RFm(R) ~ E ~ aF ,o  (R) 

in D(A | B~ Proposition 3.1 shows that  a pre-balanced dualizing complex is 

automatically balanced with respect to its intrinsic Morita duality. 

Later in this section, we will introduce a notion of balanced dualizing complexes 

which depends only on the algebra [Definition 3.7]. The next lemma shows that  

a balanced dualizing complex is pre-balanced. 

LEMMA 3.3: Let A and B be complete semilocal algebras and let E be a bimodule 
which induces a Morita duality between A and B. If  R is a dualizing complex 
over (A, B) such that 

RFm(R) ~ E -~ RF.o(R) 

in D(A | B~ then R is pre-balanced. 

Proof'. Let I be a minimal injective resolution Of AR. Then RFm(R) - E implies 

that  Fro(I) ~ = 0 for all i r 0 and Fro(I) ~ ~ AE. Hence if S is a simple A-module, 

Ext ' (S,  R) = Exti(S, I) = 0 for all i r 0 and Ext~ R) = Hom(S, soc(AE)). By 

induction Ex t~  - ,  R) is exact on A-modules of finite length. 

Since A and B are Morita dual via E,  A/m and B/n  are Morita dual via 

soc(AE) : soc(EB). Hence Ext~ R) is a finite right B/n-module.  
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Similar statements hold for Ext~o ( - ,  R) on B~ of finite length. This 

shows that  Ext~ - ,  R) induces a duality between the category of A-modules of 

finite length and that of B~ Therefore Ext~(S ,R)  is a simple B ~ 

module. If T is a simple B~ similar statements hold for Ext~o (T, R) by 

symmetry. Thus R is pre-balanced. | 

The next proposition is a version of local duality for rings with pre-balanced 

dnalizing complexes. It was proved in the graded case by Yekutieli in [Yel, 4.18]. 

We will give a new proof here which is comparatively easy. A more general 

version appears in [YZ3, 5.2]. 

PROPOSITION 3.4: Let  A and B be complete  semilocal algebras. I f  R is a pre- 

balanced dualizing complex over (A, B)  and E -- Rrm (R) = RF,o (R) as above, 

then we have the following isomorphism: 

HomA(RFm(M), E)  ==- RHOmA(M, R), 

which is natural in M E DbI(A). 

I f  C is another algebra, then the above isomorphism holds for bounded com- 

plexes M o f  A | C ~ whose cohomology is finite over A. 

Proof'. Note first that there is a natural transformation 

(I): RHomA(- ,  R) > HomA(RPm(-) ,RPm(R))  =: F 

given by applying the functor Fm to an homomorphism. Let D denote the func- 

tor RHomA(- ,  R) and D ~ denote RHomno ( - ,  R). Now D ~ is a duality so, in 

fact, we need only show D D  ~ = id ----+ F D  ~ is an isomorphism of functors 

on bounded complexes of C | B~ whose cohomology is finite over B ~ 

Since the restriction from C|  B~ to B~ commutes with natural 

transformations, it suffices to show that D D  ~ = id ~, F D  ~ is an isomorphism 

of functors on Dbf(B~ Recall that the dualizing complex R has finite injec- 

tive dimension, so both D ~ and F are way-out left functors in the sense of [Ha, 

p. 68]. Hence F D  ~ is way-out left. By [Ha, 1.7.1(i)] and the dual version of [Ha, 

1.7.1(iv)], it suffices to show that this is an isomorphism when evaluated on B. 

Now 
F D  ~ ( B )  = RnomA (Rrm (RHomBo (B, R)), RFm (R)) 

= RHomA(RF~(R), Rr~(R)) = RHomA(E, E) = B 

as was to be shown. | 

Here is a partial converse of Theorem 1.5. 
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COROLLARY 3.5: Let A and B be complete semilocal algebras. Let R be a pre- 
balanced dualizing complex over (A, B) and let E = RFm(R) - RF,o (R) as in 

Proposition 3.1. Then 

(1) R ~ HomA(RPm(A), E) TM HomBo (Rrno (B), E), 
(2) cd(A) and cd(B ~ are finite, 

(3) A and B ~ satisfy the left X condition. 

Proof: We prove only the left-handed statements, the right-handed ones being 

symmetric. 

(1) This follows by taking M to be the A-bimodule A in Proposition 3.4. 
(2) By Proposition 3.4, 

HomA(RFm(M), E) TM RHOmA(M, R) 

for finite A-modules M. Since HomA(--, E) is exact, we have 

HOmA (R-iPm (M), E) =~ Ext~ (M, R) 

for all i. Since Ext~(M,R) is a finite B~ R-iFm(M) is an artinian 
A-module. Therefore [WZ2, 3.3(1)] implies that 

RPm (M) ~ HOmBo (RHOmA (M, R), E). 

Let infR = min{i I Hi(R) ~ 0}. For every A-module M and every i < infR, 
Ext~ (M, R) = 0, and hence 

(3.5.1) R-irm(M) = HomBo (Ext/A (M, R), E) = 0. 

Thus cd(A) is bounded by - inf R. 
(3) Let M be a finite A-module. Since ExtAi(M, R) is finite B~ the 

Morita dual Hom•o (EXtA i (M, R), E) is artinian. Then the local duality formula 
(3.5.1) implies that RiFm(M) is an artinian module for every i. Now A and B 

are Morita dual so injective hulls of simple A-modules are artinian. Hence we 
may apply [WZ2, 2.3] to yield the left X condition. | 

Remark 3.6: It follows from Proposition 3.1 and Corollary 3.5(1) that there is a 

one-to-one correspondence between the isomorphism classes of the Morita duali- 

ties between A and B and the isomorphism classes of the pre-balanced dualizing 

complexes over (A, B) (see Proposition 4.7). If a pre-balanced dualizing complex 

R satisfies Corollary 3.5(1), we say that R is associa ted to E. It is clear that 
dualizing complexes associated to E are unique up to isomorphism. 
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Proof of Theorem 0.1: (1) was proved in Proposition 3.1 and (2) was proved in 

Corollary 3.5. It remains to show (3) and (4). 

(3) By (3.5.1), 

E x t , ( M ,  R) ~ HomA(R-Wm(M), E) 

for all finite A-module M. Thus 

CdimM := - in f{ i [  E x t , ( M ,  R) ~ 0} -- sup{i I RiFm(M)} =: Icd(M). 

If M is an (A, B)-bimodule finite on both sides, then lcd is symmetric, i.e., 

led(AM) = Icd(Ms) [WZ2, 2.9]. Thus R is Cdim-symmetric, i.e., Cdim(AM) = 

Cdim(MB). 

(4) This follows from Corollary 3.5 and Theorem 1.5. | 

Our definition of a balanced dualizing complex in Remark 3.2 depended on the 

Morita duality. We wish now to give a definition which depends only on A. To 

do so we restrict ourselves to the following situation. 

Suppose now that A is a noetherian complete semilocal ring with dimkA/m 

finite. Let E n be the module Homk(A/m n, k) and let E = l im E  n. It is clear that 

each E n is finite dimensional and that {E n} is a system of truncated injective 

modules. By Corollary 2.5(2), AEA induces a Morita self-duality. We consider 

E to be the natural choice of Morita duality for A. We can now copy the graded 

version of balanced dualizing complexes [Yel, 4.1] to the complete semilocal case. 

Definition 3. 7: Let A be a noetherian complete semilocal algebra. Suppose A/m 

is finite dimensional over k. Let EA ---- lim HOmk (A/m ~, k). A dualizing complex 
. . . . . .4  

R over A is called b a l a n c e d  if 

RF~ (R) ~ EA ~ Rrmo (R) 

in D(A | A~ 

It follows from Lemma 3.3 that  the balanced condition is stronger than the pre- 

balanced condition. As a consequence of Proposition 3.1 and Corollary 3.5(1), 

a balanced dualizing complex over A (if it exists) is unique up to isomorphism. 

From now on the balanced dualizing complex over A is denoted by RA. 

If A is local, then any two Morita self-dualities differ by an automorphism of 

A as the next lemma shows. 

LEMMA 3.8: (1) Let C , C  and B be algebras. Suppose cEB and c, FB are 

bimodules such that the canonicaI maps C --+ End(EB) and C' -+ End(FB) are 
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isomorphisms. If f: EB --+ FB is an isomorphism of right B-modules, then f in- 

duces an algebra isomorphism r C ~ -+ C such that f is a bimodule isomorphism 

from r cEB -+C' FB. 

(2) Suppose A is a noetherian complete local algebra with dimkA/m < co. If 

an A-bimodule E induces a Morita self-duality, then there is an automorphism 

r of A such that CE ~- EA as A-bimodules. 

Proof." (1) By the canonical homomorphism we may identify C with End(EB) 

and C' with End(FB). We define r End(FB) --+ End(EB) by r = f - l a f  for 

all a C End(FB). Hence r is an isomorphism of algebras. We now define a left 

Ct-module structure on E by 

a ,  x = r  f - l a f ( x ) ) .  

By this we see that  f is C'-linear. Therefore f is a bimodule isomorphism 

r -+c, Fu. 

(2) Let EA be as in Definition 3.7 and let E be another A-bimodule which 

induces a Morita self-dual of A. Since A is local, both E and EA are the injective 

hull of the A~ A/m. Hence E "~ EA as A~ The assertion now 

follows from (1). | 

We now prove Theorem 0.2. The graded version of this was proved by Van 

den Bergh [VdB] and partly by Yekutieli [Yel]. 

COROLLARY 3.9: Let A be a noetherian complete semilocal algebra with A/m 
finite dimensional Then the following are equivalent: 

(1) A has a balanced dnalizing complex, 

(2) A has a pre-balanced dualizing complex, 

(3) A satisfies X and cd(A) and cd(A ~ are finite. 

If moreover A is local, then every pre-balanced dualizing complex is isomorphic 

to eRA where RA is the balanced dualizing complex over A. 

Proof'. (1) ~ (2) is Lemma 3.3. 

(2) ==* (3) is Corollary 3.5. 

(3) ~ (1) Since A/m is finite dimensional over k, it is weakly symmetric. By 

Theorem 1.5, R := HomA(RFm(A), EA) is a dualizing complex over A. 

It follows from the local duality theorem [WZ2, 3.6(2)] that 

HomA(RFm(R), EA) "~ RHOmA(R, R) ~ A 
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in D(A | A~ Taking Morita duals, we find that 

Rrm(R) ~ EA. 

Similarly, RFmo (R) --- EA. Therefore R is balanced. 

For the last statement, we assume A is local and RA is a balanced dualizing 

complex over A. If R is a pre-balanced dualizing complex over A, then by Corol- 

lary 3.5 there is an A-bimodule E, which induces a Morita self-duality of A such 

that  

R ~ HOmAo (RFmo (A), E). 

By Lemma 3.8(2), there is an automorphism r of A such that E '~r EA. Thus 

R ~ HOmAo (armo (A),O EA) ~- r (Rrmo (A), EA)) ~- ~RA. I 

4. App l i ca t ions  

In this section, we present some applications of the relation between dualizing 

complexes and Morita dualities established in the last section. First we prove 

Corollaries 0.3 and 0.4. 

An algebra is called Quas i -Froben ius  (or QF) if it is artinian and has in- 

jective dimension 0. If A is QF, then the bimodule AAA induces a Morita self- 

duality. A generalization of QF algebras to higher injective dimension is the so 

called Artin-Schelter Gorenstein (or AS-Gorenstein) ring. Recall that a noethe- 

rian algebra A is A S - G o r e n s t e i n  if 
(1) A has finite left and right injective dimension d, 

(2) For every simple (left) A-module S, Exti(S, A) = 0 for all i r d and 

Ext d (S, A) is a simple right A-module, and 

(3) Part (2) holds when 'left' and 'right' are exchanged. 

An artinian (or noetherian) algebra A is QF if and only if it is AS-Gorenstein 

of injective dimension 0 [AF, Chapter 30]. We now generalize the fact that every 

QF algebra has a Morita self-duality to the higher dimensional case. 

Proof of C'orollary 0.3: Since A has finite left and right injective dimension, A is 

a dualizing complex over A. The AS-Gorenstein condition (2,3) shows that the 

complex shift A[d] is pre-balanced dualizing complex over A. Now the assertion 

follows from Theorem 0.1(1). | 

Since every noetherian local PI algebra with finite injective dimension is AS- 

Gorenstein [SZ1, 3.10], we have the following: every complete local noetherian 

PI algebra of finite injective dimension has a Morita self-duality. 
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Definition 4.1 (lYe2] [YZ2]): A dualizing complex n over (A, B) is A u s l a n d e r  
if 

(1) for every finite A-module M, every q, and every B~ N C 
Ext~(M,R)  one has j ( N )  > q, 

(2) the same holds after A and B ~ are exchanged. 

By [Le, 4.5] and [YZ2, 2.10], if R is Auslander then Cdim defined in Section 1 

is an exact, finitely partitive dimension function (for the definition of dimension 

function, see [MR, 6.8.4]). An algebra is called A u s l a n d e r  G o r e n s t e i n  if A 

has finite left and right injective dimension and A is an Auslander dualizing 

complex over A. If, moreover, A has finite global dimension, then A is A u s l a n d e r  

regular .  

Levasseur [Le, 4.8] showed that every connected graded or local Auslander 

regular algebra is a domain. Yekutieli [YZ2, 6.23] showed that  every connected 

graded (or filtered) Auslander Gorenstein algebra has a QF ring of fractions. We 

now generalize [YZ2, 6.23] to the complete local case. 

PROPOSITION 4.2: Let A be a noetherian complete semilocal ring. I r A  is AS- 

Gorenstein and A uslander-Gorenstein of injective dimension d, then the following 

hold: 

(1) I f  p is a minima/prime ideal of A, then CdimA/p = d. 

(2) A has a QF artinian ring of fractions. 

Proof: Since A is AS-Gorenstein, R := A[d] is a pre-balanced dualizing complex 

over A. By Theorem 0.1(3), R is CdimR-symmetric. Shifting R = Aid] back to A, 
the Cdim changes by +d. Hence A is CdimA-symmetric. If we let the dimension 

function (~ in [ASZ, Theorem 6.1] be CdimA, then the Auslander Gorenstein 

condition ensures that all the hypotheses of that  theorem hold. The assertions 
now follow from [ASZ, 6.1]. | 

If the algebra is local, then Auslander-Gorenstein implies AS-Gorenstein. The 

proof of the graded case [Le, 6.3] can be copied to the local case without any 
trouble. 

LEMMA 4.3 ([Le, 6.3]): Suppose A is noetherian and local. I r A  is Auslander- 

Gorenstein, then it is AS-Gorenstein. 

Corollary 0.4 follows from Proposition 4.2 and Lemma 4.3. 

Next is an application of the idea of truncated Morita dualities to the non- 

semilocal case. It follows from [WZ2, 5.6] that if A is local and R is a pre- 

balanced dualizing complex over (A, B) then ida R = id RB = 0. This condition 
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was assumed when we proved the homological identities for non-local noncommu- 

tative rings [WZ3]. We now show that this is true for any pre-balanced dualizing 

complex. Since we do not assume that A is semilocal, we need a more general 

local duality result proved in [YZ3, 5.2]. 

PROPOSITION 4.4: Let R be a pre-balanced dualizing complex over (A, B). Then 
R is normal, in the sense that 

ida R = id RB = O. 

Proof'. We say that an A-module M is torsion if every finite submodule of M has 

finite length. When A is semilocal, this agrees with m-torsion. Let ~4 be the full 

subcategory of torsion A-modules. The torsion A-modules form a h e r e d i t a r y  

t o r s i o n  class, i.e., it is closed under subquotients, extensions and infinite direct 

sums. Hence M is a local iz ing s u b c a t e g o r y  of A - Mod. These notions for 

B~ are defined similarly and the full subcategory of torsion B~ 

is denoted by H .  

The torsion functor FM is defined similarly to Fro. A more general version is 

given in [YZ3, Section 1]. 

By [YZ3, (1.1)], 

F ~  ( - )  = lim HomA (A/a, - ) 

where a runs over all left ideals of A such that A/a is artinian. Hence 

E : =  R ~  (R) = lim Ext~ (A/a, R). 

The pre-balanced condition ensures that EB is torsion. 

Let I be the minimal injective resolution of mR. Since AR is pre-balanced, 

only I ~ contains nonzero torsion A-modules. Hence R F ~ R  ~ R~ = E. 

Let T be any simple B~ It follows from the pre-balanced condition 

and the spectral sequence 

Ext~ (Ext~o (T, R), R) ==~ T 

that there is a simple A-module S = A/b such that Ex t , (S ,  R) ~ T. Since 

Ext ~ ( - ,  R) is exact on artinian modules, if a is a left ideal of A contained in b 

canonical map Ext A (A/b, R)) -~ such that A/a is artinian then the o Ext~ R) 
is injective. Since lim is exact, we obtain an injective map 

li___m acb Ex t~  (A/b, R) -+ ~ acb Ext~ R), 
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where a runs over all left ideals of A contained in b such that A / a  is artinian. 

The left term is isomorphic to EXt~ R), which is isomorphic to T, and the 

right term is isomorphic to E. Thus T is a submodule of EB. 

The pre-balanced condition ensures that id R > 0. If ida R = i > 0, then there 

is a finite A-module M such that Exth (M, R) r 0. Since Exti4 (M, R) is a finite 

B ~ it has a simple factor, say T. Thus there is a nonzero map 

Exti4(M, R) ~ T -~ E 

which gives a nonzero element in E x t ~  (R HOmA (M, R), E).  By Yekutieli's local 

duality [YZ3, 5.2], for any finite A-module M, we have 

R F ~  M ---- R HomBo (R HomA (M, R), R F ~  R) -~ R HOmBo (R HomA (M, R), E). 

Thus 

R - i F ~  M = Exts~ (R HomA (M, R), E)  r 0. 

This is a contradiction. Therefore ida R -- 0. | 

In the rest of this section we show the statement made in Remark 3.6. 

LEMMA 4.5 ([Xu,4.6]): Suppose A and B are Morita dual via a bimodule AEB. 

(1) I f  A' and A are Morita equivalent via an invertible bimodule A'PA, then 

A ~ and B are Morita dual via E ~ := P | E ~ HomA(P ~, E) where P '  = 

HomAo (P, A). 

(2) I f  A ~ and B are Morita dual via E ~, then E t = P QA E where P = 

HOmBo (E, E'). And  B and B'  are Morita equivalent via P. 

A similar statement holds for dualizing complexes. 

LEMMA 4.6: Suppose R is a dualizing complex over (A, B).  In part (2) we also 

assume that A and B are complete semilocal and are Morita dual via a bimodule 

E. 

(1) I rA '  and A are Morita equivalent via P, then 

R' := P QA R : HomA(P',  R) 

is a dualizing complex over (A', B).  f f  R is pre-balanced, then so is R ~. 

(2) I f  R is associated to E,  then R' is associated to E ~ := P | E.  

Proof: (1) Recall that P '  = HomAo(P,A).  First note that H o m A ( P ' , - )  is 

naturally isomorphic to P | -- because A and A' are Morita equivalent. If M 
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is in D}(A'), then we have 

(4.6.1) 
R HomA, (M, R') = R HomA, (M, HomA(P', R)) 

= R HomA (P' | M, R). 

This shows that idA, R' is finite. Other axioms in Definition 1.1 can also be 

shown easily for R' and therefore R' is a dualizing complex over (A', B). 

Suppose R is pre-balanced. Let S' be a simple A'-module. Then S := P'@A' S' 

is a simple A-module. Then (4.6.1) shows that Ext~4,(S',R' ) ~ Ext~4(S,R ). 

Therefore Ext~(S ', R') = 0 for all i r 0 and Ext~ ', R') is a simple B~ 

Given any finite (or simple) B~ T, we have 

(4.6.2) RHOmBo(T,R') = RHOmBo(T,P@A R) = P@A RHOmBo(T,R). 

This shows the other half of the pre-balanced condition. 

(2) Now suppose A and B are complete semilocal. Then so is A'. Suppose R 

is associated to E. Let T = Bin n in (4.6.2); we have 

Ext~ (B/n ~, R') = P | Ext~ (B/n n, R). 

After taking lim, we see that  E '  = P | E. By Proposition 3.1, A' and B are 
+___ 

Morita dual via E'  and, by Corollary 3.5, R' is associated to E'. | 

PROPOSITION 4.7: Suppose R is a dualizing complex over (A, B) where A and 

B are complete semilocal algebras. Then there is a one-to-one correspondence 

between the following two classes. 

(a) Isomorphism classes of pre-balanced dualizing complexes over (A, B). 

(b) Isomorphism classes of bimodules which induce Morita dualities between 

A and B. 

Proos For any pre-balanced dualizing complex R in class (a), we define E = 

H~ By Proposition 3.1, E is in class (b). We know from Corollary 3.5(1) 
that  this map is one-to-one. To show that the map is onto, we pick any E'  in class 

(b). By Lemma 4.5(1), E'  = P | E where P is some invertible A-bimodule. 

Also, by Lemma 4.6(2) there is an R' in class (a) which is associated to E'.  Thus 

the pre-image of E '  is R'. | 

COROLLARY 4.8: Assume the hypotheses of Proposition 4.7. Suppose A' and 

B' are Morita equivalent to A and B respectively. Then there is a one-to-one 

correspondence between the following two classes. 
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(a) Isomorphism classes of pre-balanced dualizing complexes over (A t, B'). 

(b) Isomorphism classes of bimodules which induce Morita dualities between 
A t and B t. 

Proof'. The assertion follows from Lemma 4.6 and Proposition 4.7. | 

5.  F i n i t e  e x t e n s i o n s  

In this section we prove that  the pre-balanced duatizing complex extends for 

finite ring extensions. As before we assume that  A and B are Morita dual via an 

artinian bimodule E.  As a consequence, A and B ~ are left noetherian complete 

semilocal algebras. 

In this section we also assume that  A and B are two-sided noetherian. For 

the next construction we further assume that  A/m and hence B/n is weakly 

symmetric.  

We consider a ring extension f : A > A ~ which is finite in the sense that  A ~ 

is a finite A-module on both sides, and is local in the sense that  f (m)  c m ~ where 

ra t denotes the Jacobson radical of A t. These two hypotheses ensure that  A' is 

a complete noetherian semilocal ring and that  At/m ~ is weakly symmetric.  Also, 

the local hypothesis shows that  the filtrations {A'mr}rem {m~At},.em {m'r}~e~ 

are all cofinal. We wish to study Morita duality for Aq 

In general, Morita duality does not behave well even with respect to finite ring 

extensions [Xu, 7.5]. This situation is remedied by our assumption that  A/m is 

weakly symmetric.  We will in fact show that  

E '  := HomA (A', E) 

induces a Morita duality for A t. First note that  by the adjunction formula, the 

At-module E t is an injective cogenerator. Note that  the functor H o m A ( - , E )  

restricts to HomA, ( - ,  E ' )  on Mod(A').  

LEMMA 5.1: Assume the notation given above. Suppose that A/m is weakly 
symmetric. Then AE~B is an artinian bimodule. 

Proof: Morita duality shows that  E' is artinian over B. We seek to show that  

it is artinian over A by showing that  it is m-torsion and has finite length socle. 

To this end, let f E E ~ = HomA(A~,E) and note that  since A ~ is finite over 

A, im f c_ E ~ :-- HomA(A/m r, E) for some r. We can choose s E N such that  
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A~m 8 C_ mrX.  Hence m~f = 0, showing that E t is indeed m-torsion. To bound 

the socle we note that for s large enough we have 

soc E' = HOmA(A/m, HomA (A', E)) 

= HomA(A'/A'm, E) C_ nomA(A'/mSA ', E). 

Weak symmetry now ensures that this is finite length. Hence A El is indeed 

artinian. II 

As a consequence, A,E ~ is also artinian. This artinian module E ~ does induce 

a Morita duality for X .  

LEMMA 5.2: Assume the notation given above. Suppose that A/m is weakly 
symmetric. Then E ~ induces a Morita duality for Aq 

Proof: By [Xu, 7.3], we need to show that AA ~ and AE ~ are linearly compact 

(see [Xu, Section 3] for a definition). Now A' is linearly compact since it is finite 

over A (see [Xu, 3.3]) while E' is linearly compact since, by [Xu, 3.1], artinian 

modules are. | 

We let B'  -- EndA, E ~ denote the Morita dual of A ~ induced by E '  and let n' 

be its Jacobson radical. We wish to show that it plays a symmetric role to that 

of A. Now B r is a semilocal ring since Br/n ' is Morita dual to A~/m ~ and so 

also is semisimple artinian. Note that there is a natural action of B on E '  which 

commutes with the action of X .  This induces a natural map g: B ---+ B'. To see 

that B ~ is a noetherian bimodule over B we consider the following isomorphism 

of B-bimodules, 

B'  ~- HomA, (E',  HomA(A', E)) -~ HomA(E', E). 

Since E' is an artinian (A, B)-bimodule, [WZl, 7.6] ensures this last term is 

noetherian on both sides. We can compute B'/n'  from [WZ1, 7.2(4)], which 

gives 

B'/n' = nomA, (HOmA, (A'/m', E'), E'). 

If we let E 1 denote HOmA(A/m, E), then this last term can be rewritten as 

nomA, (HomA(A'/m', El) ,  E') = HomA(HOmA(A'/m', El) ,  El ) .  

This last term is annihilated by n (on both sides), which shows that  g(a) C_ a'. 

We have thus proved part 1 of the following. 
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PROPOSITION 5.3: Assume the notation above. Suppose that A /m is weakly 

symmetric. 

(1) The Morita dual B ~ is a finite local ring extension of B. 

(2) As an (A, B')-bimodule, E' is isomorphic to HOmBo (B', E). 

Proof: Consider E '  as an (A, B')-bimodule. Then 

E' = Hom.o (HomA(E', E), E) = Uom.o (UomA, (E', E~), E) = Homso (B ~, E), 

where the first equality holds since E ~ is an artinian bimodule and hence is E- 

reflexive, m 

COROLLARY 5.4: Let A be an AS-Gorenstein noetherian complete semilocal ring. 

If  A im is weakly symmetric, then every finite local ring extension of A is left and 

right Morita. 

Proof: The assertion follows from Corollary 0.3 and Lemma 5.2. m 

We say that  (A ~, B ~, E t) is a f ini te  ex t ens ion  of (A, B, E) if there are algebra 

homomorphisms A -+ A ~ and B --+ B ~ such that  

(1) A and B are noetherian, 

(2) the maps A -+ A ~ and B -+ B ~ are finite and local, 

(3) A/m is weakly symmetric, 

(4) E '  -~ HomA(A', E) as (A', B)-bimodule, and 

(5) E '  ~ HOmBo (B', E) as (A, B')-bimodule. 

By Proposition 5.3, when we have a finite local map A --+ A ~ and when A/m 

is weakly symmetric, then there are B ~ and E' such that  (A ~, B ~, E ~) is a finite 

extension of (A, B, E). 

Next we show that when (A, B, E) has a finite extension, the pre-balanced 

dualizing complex extends too. The following lemma was proved in [WZ1, 6.5]. 

LEMMA 5.5: Suppose A is noetherian complete and semilocal and A -+ A ~ is 

finite and local. Then RFm, is the restriction of RFm to D+(A~). 

THEOREM 5.6: Suppose (A', B', E') is a finite extension of (A, B, E). If  R is 

a pre-balanced dualizing complex associated to E, then there is a pre-balanced 

dualizing complex R' over (A ~, B t) associated to E'. Further, 

R' ~ RHOmA(A', R) 
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holds in D(A' | B ~ and 

R ! r.~ = R HomBo (B', R) 

holds in D(A | (B')~ 

Proof'. By Corollary 3.5(2), RFm and RFno have finite cohomological dimen- 

sion, so Lemma 5.5 shows that RFm, and RFn,o also have finite cohomological 

dimension. Also, Corollary 3.5(3) shows that  A and B ~ satisfy the X-condition, 

so by Lemma 5.5 and [WZ2, 2.3], so do A' and (B') ~ 

Let F t be the functor HomA,(RFm,(-) ,E ~) and G ~ the functor 

HOmB,(Rr.,o (-), E'). Then (F', G') are contravariant functors between D(A') 
and D(B'~ From Lemma 5.5 and the fact that HomA(- ,E )  restricts to 

HomA,(- ,E ' ) ,  we see that  F := HomA(RFm(-) ,E)  restricts to F '  when ap- 

plied to D+(A'). Similarly G := Homso(RF,o ( - ) ,  E) restricts to G'. By local 

duality (see Proposition 3.4), F ~ HomA(-,  R) and G ~ HomBo ( - ,  R). Hence 

(F, G) defines a duality between Dbf(A) and Dbf(B~ This restricts to a dual- 

ity (F',  G') between Db:(A ') and D~(B'~ thus verifying condition (D1) in [Mi, 

p. 156]. Since RFm, and RFn, o have finite cohomological dimension, conditions 

(D2r) and (D21) of [Mi, p. 156] hold. Therefore A' and B' are Morita derived 

dual in the sense of [Mi, p. 156]. By [Mi, 3.3], there is a dualizing complex A, UB' 
(or cotilting bimodule complex in Miyachi's terminology) between A ~ and B ~. 

We now prove that  U is pre-balanced. By [Mi, 3.5], the complex U constructed 
in [Mi, 3.3] has the following property: for any X C Db:(A'), 

F'(X) = RHOmA,(X, U) 

in D(B'~ Let X be a simple A'-module S. Then RHOmA,(S,U) = 
HomA,(S,E~), which is a simple right B~-module. This shows half of the pre- 

balanced condition. The other half follows from the double Ext spectral se- 

quence [YZ2, 1.7]. Therefore U is pre-balanced. By Proposition 4.7, there is a 

pre-balanced dualizing complex R ~ associated to E ~. 

Finally, by local duality Corollary 3.5(1) and Proposition 3.4, 

R' ~ ( (A') ,E')  ( ( ) ) (A',R) = RHOmA, RFm, ~ RHOmA RFm A ~ E ~ RHOmA 

in D(A ~ | B~ The other formula holds similarly. | 

Let us mention two special cases. The first case is when A ~ is a factor ring 

of A. 
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LEMMA 5.7 ([AF, 24.6]): Suppose A and B are Morita dual via a bimodule E. 

Then there is an isomorphism r from the lattice of ideals of A to the lattice of 

ideals of B. Further, if  I is an ideal of A and J = 4(I) ,  then A / I  and B / J  are 

Morita dual via the bimodule 

E' :-- HomA(A/I,  E) = HomBo (B/J,  E). 

In particular, if A and B are noetherian and A/m is weakly symmetric, then 

(A/I ,  B/J ,  E') is a finite extension of (A, B, E). 

The next result is an immediate consequence of Theorem 5.6. 

COROLLARY 5.8: Let ( A / I , B / J , E ' )  be as in Lemma 5.7. Suppose R is a pre- 

balanced dualizing complex over (A, B) associated to E. Then there is a pre- 

balanced dualizing complex over (A/  I, B /  J) associated to E ~. Further, 

R' --"~ RHOmA(A/I,  R) "~= R HomBo (B/J,  R) 

in D(A | B~ 

The second case is when Aim is finite dimensional over k. The following is not 

hard to check and the proof is omitted. 

LEMMA 5.9: Let A be a noetherian complete semilocal algebra such that A /m is 

finite dimensional. Let F,A : l imHomk(A/m n, k). Let (A, A, EA) be the Morita 

duality. 

(1) If  M is a finite A-module, then 

HomA(M, EA) = limHomk(A/ra n QA M, k). 

(2) If  M is an artinian A-module, then 

HOmA (M, EA) = lim HOmk (HomA (A/m n, M), k). 
+____ 

(3) I f  A -~ C is a finite local map, then (C, C, Ec) is a finite extension of 

(A,A, EA). 

(4) If  C = A / I  for some ideal I, then r  = I (where r is the map described 

ill Lemma 5.7). And 

Ec = HomA(A/I,  EA) ---- HomAo (A/I ,  EA). 

The following corollary follows from Theorem 5.6 and Lemma 5.9. 
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COROLLARY 5.10: Let A be a noetherian complete semilocal algebra such that 

A/m is finite dimensional. Let RA be a balanced dualizing complex over A. If 

A -~ C is a finite local map, then C has a balanced dualizing complex Rc and 

Rc ~- RHOmA(C, RA) ~- RHomAo(C, RA) 

in D(A | A~ 

Corollary 0.5 is a special case of Corollary 5.10. 
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