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ABSTRACT
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to classical ring theory are also given.

Received August 7, 2001

285



286 D. CHAN, Q. S. WU AND J. J. ZHANG Isr. J. Math.

0. Introduction

The noncommutative dualizing complex in the sense of Yekutieli [Yel] is a very
useful tool in studying the homological properties of noncommutative rings. For
example, noncommutative versions of the Auslander-Buchsbaum formula, Bass
theorem, the no-holes theorem can be proved by using dualizing complexes (see
[Jol, Jo2, Jo3] in the graded case, and [WZ1, WZ2, WZ3] in the ungraded case).
Other applications of dualizing complexes can be found in the work of Yekutieli
[Yel, Ye2, Ye3, YZ1, YZ2].

The dualizing complex is equivalent to the cotilting bimodule complex defined
by Miyachi in [Mi], where he studied Morita duality theory for derived categories.

The main existence theorem for dualizing complexes is due to Van den Bergh
[VdB, 6.3]. Van den Bergh’s result was generalized from the graded case to the
complete local case in [WZ2] and [Ch].

The dualizing complexes constructed by Van den Bergh’s method have good
properties such as bifiniteness and Cdim-symmetry [Theorem 1.5}, which are im-
portant in studying some other ring-theoretic properties. Pre-balanced dualizing
complexes [Definition 1.6] appear naturally in various ways and the existence of
these is proved for several classes of algebras. The main purpose of this paper
is to show that every pre-balanced dualizing complex over a complete semilocal
ring is equivalent to one constructed by Van den Bergh’s method. Consequently,
such dualizing complexes have lots of good properties.

THEOREM 0.1: Let A be a left noetherian algebra and B be a right noetherian
algebra. Suppose A and B are semilocal and complete with respect to their
Jacobson radicals. Let R be a pre-balanced dualizing complex over (A, B). Then
the following assertions hold.
(1)} There is a Morita duality between A and B induced by R.
(2) A and B° have finite cohomological dimension and satisfy the left x condi-
tion.
(3) R is Cdim-symmetric.
(4) If A and B are noetherian and satisfy the x condition, and if A/m is weakly
symmetric, then R is bifinite.

A basic ingredient in Van den Bergh’s construction is Morita duality, which
is a noncommutative version of Matlis duality. We prove part (1) by using
truncated Morita dualities between the artinian algebras A/m"™ and B/n™. Here
m and n are the Jacobson radicals of A and B respectively. This idea was
first used by Jategaonkar in [Ja]. Other parts follows from the local duality
formula [Proposition 3.4] and results in [WZ2] and [Ch].
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Jategaonkar also showed that every noetherian complete semilocal algebra A
with A/m finite dimensional is Morita self-dual [Ja, 2.7]. This allows us to show
an analogue of Van den Bergh’s result [VdB, 6.3] and Yekutieli’s result [Yel,
4.10].

THEOREM 0.2 ([Ch]): Let A be a complete noetherian algebra with Jacobson
radical m such that A/m is finite dimensional over the base field. Then the
following are equivalent:
(1) A has a pre-balanced dualizing complex.
(2) A has a balanced dualizing complex.
(3) A satisties the x condition and has finite left and right cohomological
dimension.

The definition of a balanced dualizing complex is given in Definition 3.7 for
the algebras which appear in Theorem 0.2. We have attempted to define the
balanced condition for the algebras which appear in Theorem 0.1, but it seems
that there is no way to define the balanced condition in general. Theorems 0.1
and 0.2 suggest that the pre-balanced condition is a good replacement for the
balanced condition.

Theorems 0.1 and 0.2 have some immediate consequences. Note that not every
noetherian semilocal complete ring has a Morita duality. Also, it is unknown
if every noetherian semilocal complete PI ring is Morita self-dual. The next
corollary gives a criterion for the existence of Morita self-duality.

COROLLARY 0.3: Every AS-Gorenstein noetherian complete semilocal algebra is
Morita self-dual.

The property of Cdim-symmetry is crucial in the proof of the following
corollary, which is an analogue of a result of Yekutieli’s [YZ2, 6.23]. It is still an
open question whether an AS-Gorenstein noetherian local ring has an artinian
fraction ring.

COROLLARY 0.4: If A is an Auslander Gorenstein complete local noetherian ring,
then A has a QF artinian fraction ring.

The following corollary is useful for studying the structure of the dualizing
complex. See [YZ4] for some details.

COROLLARY 0.5: Let A be a noetherian complete algebra with Jacobson radical
m such that A/m is finite dimensional over the base field. Suppose that A has a
balanced dualizing complex R4. If B Is a factor ring of A, then B has a balanced
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dualizing complex Rp and

Rp = RHomy (B, Rp) = RHom- (B, R4)
in D(A® A°).

In Section 1, we review some basic definitions concerning dualizing complexes
and Morita duality. Section 2 contains some results about Morita duality. We
prove Theorems 0.1 and 0.2 in Section 3 and prove Corollaries 0.3 and 0.4 in
Section 4. In Section 5, we study the behavior of Morita duality and dualizing
complexes under finite extensions. The proof of Corollary 0.5 is given in Section
5.

1. Definitions and previous results

In this section we will review some definitions about dualizing complexes and
other definitions related to Van den Bergh’s construction in the complete semi-
local case. We refer to [Ha] for basic notions about complexes and derived
categories.

Throughout the paper, we fix a base field k and all objects will be assumed to
be defined over k. Let A be an algebra. The opposite ring of A is denoted by A°.
Unless otherwise stated, we will work with left modules. We say an A-module is
finite if it is finitely generated over A.

Let D(A) (D®(A), D*(A) and D~(A) respectively) denote the derived cat-
egory of (bounded, bounded below, bounded above, respectively) complexes of
A-modules. Let Dy¢(A) denote the derived category of complexes of A-modules
with finite cohomology. The noncommutative version of a dualizing complex was
introduced by Yekutieli.

Definition 1.1 ([Yel] [YZ2]): Let A be a left noetherian algebra and B be a right
noetherian algebra. An object R € D?(A ® B°) is called a dualizing complex
over (A, B) if it satisfies the following three conditions:

(1) R has finite injective dimension over A and B°.

(2) R has finite cohomology over A and B°.

(3) The canonical morphisms B — R Homy4 (R, R) and A — R Hompg- (R, R)

are isomorphisms in D(B ® B°) and D(A ® A°) respectively.
When A = B, we say that R is a dualizing complex over A.

When we say that R is a dualizing complex over (A, B), we will assume
implicitly that A is left noetherian and B is right noetherian.
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Van den Bergh proved the following remarkable theorem about the existence
of dualizing complexes in the graded case.

THEOREM 1.2 ([VdB, 6.3]): Let A be a noetherian connected graded algebra.
Then A has a balanced dualizing complex if and only if A satisfies the x condition
and has finite left and right cohomological dimension.

The terminology used above is defined in [Yel] and [VdB]. We will review the
ungraded versions of this terminology only, since we are primarily interested in
complete semilocal rings.

The Jacobson radical of A is denoted by m. We say that A is semilocal if
A/m is a semisimple artinian ring. Left (or right) artinian rings are semilocal.

Let (4, m) be a left noetherian semilocal ring and let A9 = A/m. We say
that A satisfies the left x condition if Ext’y(Ag, M) is of finite length as an
Ap-module for every i and every finite A-module M. The right x condition is
defined similarly. If moreover A is noetherian, we say that A satisfies the y
condition when A satisfies the left and the right x condition. Stafford showed
that noetherian semilocal PI algebras satisfy the x condition [SZ1, 3.5]. However,
not every noetherian local algebra satisfies x [SZ2, 2.3] [WZ1, 9.4].

For any A-module M, the m-torsion functor I'y, is defined to be

[n(M)={ze M|m"z =0, for n>> 0}.

The derived functor RI'y, is defined on the derived category Dt (A). We define
the ith local cohomology of X € D*(A) to be

H., (X) = R'Tn(X).
The local cohomological dimension of an A-module M is defined to be
led(M) = sup{i| H. (M) # 0}.
The cohomological dimension of A (or of I'y,) is defined to be
cd(A) = sup{led(M)| for all A-modules M}.

Obviously, ['n(M) = li_r)nHom A(A/m™ M), which implies that
Hyp (X) = lim Ext’y (4/m", X)
for all X € D*(A). Since H?, commutes with direct limits, we have

cd(A) = sup{led(M)| for all finite A-modules M}.
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If cd(A) is finite, then cd(A) = led(4A).

There are two basic ingredients in Van den Bergh’s construction [VdB]. One
is local cohomology defined above. The other is graded Matlis duality. The
ungraded version of Matlis duality is Morita duality, which we now review.

Let B be another algebra and let 4Eg be an (A, B)-bimodule. We say that £
induces a Morita duality between A and B if

(1) oF and Ep are injective cogenerators in the categories of left A-modules

and right B-modules, respectively;

(2) the canonical ring homomorphisms A — End Eg and B° — End 4F are

isomorphisms.
In this case we say that A is left Morita and B is right Morita, and that A
is Morita dual to B (or A and B are in Morita duality). If A = B, then A
is Morita self-dual, or has a Morita self-duality. We refer to [AF, Xu] for some
basic properties of a Morita duality.

Since a Morita duality is a duality between categories of modules and a dual-
izing complex induces a duality between derived categories, a dualizing complex
can be viewed as a generalization of a Morita duality [Mi]. In fact if A and B
are local and artinian, every dualizing complex is given by a Morita duality and
a complex shift [WZ2, 3.7].

Graded Matlis duality (i.e., graded vector space duality) exists trivially. How-
ever, not every two-sided artinian algebra is left Morita [Xu, 2.9]. Some criteria
for the existence of Morita dualities for artinian rings were worked out by Azu-
maya, Fuller, Jategaonkar, Morita, Xue and others. See [AF, Xu] for their results.

With an extra condition on A/m, a left artinian ring A is left Morita if and
only if A is artinian [Proposition 1.3]. A left artinian algebra A is left weakly
symmetric if

[LWS] for every B and every two-sided artinian bimodule 4Mp and
every left artinian A-module 4N, Hom4(M, N) is a left B-module
of finite length.

Right weak symmetry for right artinian algebras is defined similarly. If A is
artinian, we say that A is weakly symmetric if A is left and right weakly
symmetric. It is easy to check that this definition of weak symmetry is equivalent
to the definition given in [WZ1, WZ2]. By [WZ1, 7.3 and 7.4] artinian PI algebras
and stratiform simple artinian algebras are weakly symmetric. The stratiform
simple artinian algebra was introduced by Schofield in [Sc]. The Weyl skew fields
and division algebras of skew polynomial rings are stratiform.
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PROPOSITION 1.3: Suppose that A is left artinian and that A/m is weakly sym-
metric. Then the following are equivalent.

(1) A is left Morita.

(2) A is right Morita.

(3) A is artinian.

Proof: (1) = (3) This follows from [WZ1, 7.5].

(3) = (1) In this case m/m? is artinian on both sides. The weak symmetry
implies that Hom4(4m/m? 4 A/m) is of finite length. By [Xu, 11.3], A4 is left
Morita. In this implication we only use left weak symmetry of A.

Similarly (2) is equivalent to (3). 1

The following partial converse is easy to prove: Let Ag be a semisimple artinian
algebra. If every artinian algebra A with A/m = Ap is left Morita, then Ay is
left weakly symmetric.

The next example shows that Proposition 1.3 does not hold when A/m is not
weakly symmetric.

Example 1.4: [AF, Exercise 24.9]. Let C' C D be division rings such that D¢ is
finite dimensional and ¢D is not (see [Co]). Let

D D
1= (2 2)
Then A is left and right artinian but not left Morita. Both A/m and D are not

left weakly symmetric because Homp(pDe,p D) is not a finite right C-module
[S71, 3.1].

The next result was proved in [WZ2, 0.1]. A similar result appeared in [Ch].

THEOREM 1.5: Let (A, m) and (B, n) be complete noetherian semilocal algebras
and let 4Ep be a bimodule which induces a Morita duality between A and B.
Suppose that

(i) A and B° have finite cohomological dimension,

(ii) A and B satisfy the (left and right) x condition, and

(i) Ap = A/m is weakly symmetric.
Then

(1) R = Homu(R[w(A),F) is isomorphic to Hompe(RT.o(B),E) in

D(A & B°);
(2) R is a dualizing complex over (A, B);
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(3) R is bifinite, Cdim-symmetric and pre-balanced.

The proof of this was similar to the proof of [VdB, 3.6]. Some terms in part
(3) need to be defined. Let R be a dualizing complex over (A, B) and let M be
an A-module. The grade (or j-number) of M with respect to R is

J(M) = inf{q| Ext% (M, R) # 0}.

The grade of a B°-module is defined similarly. The canonical dimension with
respect to a dualizing complex R is defined to be

CdimM = —j(M)

for all finite A- (or B°-) modules M.

A dualizing complex R over (A, B) is called Cdim-symmetric if for every
(A, B)-bimodule M finite on both sides, one has Cdimy M = CdimMp. A dual-
izing complex R over (A, B) is called bifinite if the following conditions hold:

(1) for every A-bimodule M finite on both sides, Ext%, (M, R) is finite on both

sides;

(2) the same holds after A and B° are exchanged.

The next notion is a central object of this paper.

Definition 1.6 ([Yel] [WZ2]): A dualizing complex R over (A, B) is pre-
balanced if
(1) for every simple A-module S, Ext%(S, R) = 0 for all i # 0 and Ext% (S, R)
is a simple B°-module,
(2) the same statement holds after A and B° are exchanged.

To end this section we show that the pre-balanced condition is automatic in
certain cases, which suggests that this condition is natural. Recall from [SZ1,
3.5] that every noetherian PI semilocal algebra satisfies the x condition so the
next proposition applies in particular to such algebras.

PROPOSITION 1.7: Let A and B° be noetherian local algebras satisfying the left
x condition and let R be a dualizing complex over (A, B). Then a complex shift
of R is pre-balanced.

Proof: First, we show that Ext’ (A/m, R) is a finite bimodule. It follows from
properties of the dualizing complex that Ext}(A4/m, R) is a finite B°-module. It
remains only to show that it is finite as an A-module, so we may as well forget
the B°-structure on R. We will show that if X € D}(A), then Ext'(A/m, X)
is a finite A-module. By the long exact sequence and induction on the length
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of X, one may reduce to the case that X is a finite A-module in which case the
assertion is precisely the left y condition.
Let S be the simple A-module and T be the simple B°-module. Let

a = max{i| Ext4(S,R) # 0}, b=min{i| Ext’,(S, R) # 0}

and
¢ = max{i| Exth, (T, R) # 0}, d = min{i| Extg.(T, R) # 0}.

It follows from the induction that, for any nonzero A-module M of finite length
and any nonzero B°-module N of finite length, we have

a = max{i| Ext},(M,R) # 0}, b= min{i] Ext},(M,R) # 0}

and
¢ = max{i| Extl. (N, R) # 0}, d=min{s| Exth(N,R) # 0}.

We saw in the first paragraph that Exty(A/m, R) is finite. Since Ext’(4/m, R)
is an A/m-module, it is an A-module of finite length. By Lenagan’s lemma [GW,
7.10}, it is also of finite length as a B°-module. Its summand Ext(S, R) is thus
also a B°-module of finite length. By the definitions of a, b, ¢, d we see that

Ext’. (Exty (S, R), R) # 0

for (i,7) = (a,c), (a,d), (b,c) and (b,d). Consider the convergent spectral
sequence
E} .= Ext’(ExtY(S,R),R) = S

[YZ2, 1.7]; we see that all possible nonzero terms in the E%-pages are in the
rectangle bounded by the four corner vertices (a, ¢), (a,d), (b, ¢) and (b, d). Since
the boundary maps at vertices {(a, d) and (b, ¢) are zero, the E2-terms at these two
vertices will survive in the the E*°-page. Since the spectral sequence converges,
the only possibility for this to happen is when a = b = ¢ = d. After shifting R,
we may assume @ = b = ¢ = d = 0. Hence Ext4,(S,R) = 0 for all i # 0. This
implies that Ext®(—, R} is exact on modules of finite length. Finally, the spectral
sequence
Ext?(Ext!(M,R),R) = M

shows that Ext®(—, R) induces a duality between the category of finite length A-
modules and the category of finite length B°-modules. Therefore Ext(S, R) 7.
By symmetry, the same statement holds for T. Thus R is pre-balanced. 1
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2. Truncated Morita dualities

In this section we recall some results due to Miiller and Jategaonkar, which play a
key role in constructing Morita dualities for algebras with pre-balanced dualizing
complexes.

Let A and B be two algebras with ideals m C A and n C B. Assume that A/m
and B/n are semisimple artinian. Suppose that for every n,

(1) A/m™ is left artinian and B/n" is right artinian;

(2) there is a Morita duality between A/m™ and B/n™;

(3) the Morita duality between A/m™~! and B/n™"! is the restriction of the

Morita duality between A/m™ and B/n™.

Let E™ be an (A/m™, B/n")-bimodule which induces the Morita duality. Hence
E™ is artinian on both sides. We call {(A/m"”, B/n", E")|n € N} a system of
truncated Morita dualities.

For any n, there are two contravariant functors

F" :=Homy/m~(—, E") and G" :=Homg/n)e(—, E"),

which give rise to a duality between the category of artinian left A/m”-modules
and the category of artinian right B/n"-modules.

Define the essential length of an artinian module as follows:

el(M)=0i# M =0,

el(M) = 1if M = soc(M) where soc(M) is the sum of all simple submodules
of M, and

el(M) = el(M/soc(M)) + 1.
Note that an m-torsion A-module M is an A/m'-module if and only if el(M) < t.

LEMMA 2.1: There is a bimodule embedding E® — E™! such that the image
is
HomA/mn+1 (A/m”, En+1) = Hom(g/nnﬂ)o (B/n", En+1).

Proof: 1f 4Epg defines a Morita duality between A and B, then the lattices of
the ideals of A and B are isomorphic [AF, 24.6(1)]. By the proof of [AF, 24.6(1)]
(see Lemma 5.7), if I is an ideal of A and J is the corresponding ideal of B, then
A/I and B/J are Morita dual via the bimodule

Homu(A/I, E) = Hompg-(B/J, E).

Applying this statement to (A/m"*!, B/n"*t! E"t1) we see that the ideal
mf/m"*! corresponds to n*/n"*! for ¢ < n because duality preserves essential



Vol. 132, 2002 PRE-BALANCED DUALIZING COMPLEXES 295

length. Furthermore, the bimodule inducing the Morita duality between A/m!
and B/n' is

N := HomA/mn+1 (A/mt, E"+1) = HOm(B/nn+1)o (B/nt, En+1).
Since E™ is induced from E™*1, there is a right B/n"-module isomorphism
7y : Homa (M, E™) = Homyu (M, E™*Y)

for all A/m™-modules M. If M = A/m", then Tp induces an isomorphism from
E% — Np. Since 7 is natural, this is also A/m"-linear. |

By Lemma 2.1, we have a direct system of bimodules {E™| n > 0}. Define
E = h_I)nE" For simplicity we identify E™ with its image in E, so E™ is a
subbimodule of E. If E* C E is as in Lemma 2.1, we call {E™| n > 0} a system
of truncated injective modules. The completions of A and B are defined to
be A = l‘iglA/m" and B = 1}313 /n™ respectively. Note that F is a bimodule

over (A, B) and over (4, B).

LEmMA 2.2: Let E = lim E™. Then Homu(E, E) = Hom,(E, E) = B and the
equality also holds when A and B° are exchanged.

Proof: Since E™ induces a Morita duality between A/m™ and B/n",
B/n™ = Hom4(E", E™) = Hom4(E", E).

Now the identity follows from the formula Hom(lim E®, —) = lim Hom(E", —).
= —
B

Note that the lattice of A-submodules of F is identical with the lattice of
A-submodules of E. The following is a simplified version of the main result in

[Ja).
THEOREM 2.3 ([Ja, 2.2]): Let A be a left noetherian complete semilocal
algebra and B a complete right noetherian semilocal algebra. Suppose that

{(A/m" B/n" E™)}, is a system of truncated Morita dualities; then (A, B, E)
is a Morita duality. In particular, E is artinian on both sides.

Jategaonkar also strengthens a result of Miller [Mu, 8] as follows.

THEOREM 2.4 ([Ja, 2.4] [Mu, 8]): Let A be a left noetherian complete semilocal
algebra, 4L be an injective cogenerator with finite essential socle, and B =
End(4E). Then the following conditions are equivalent:
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(1) A is left Morita.
(2) AF is artinian.
(3) B is right noetherian.

COROLLARY 2.5: Let A be a left noetherian complete semilocal algebra with
A/w finite dimensional. Let E™ = Homy(A/m" k) and E = h_r)nE'"
(1) aF is artinian if and only if A is right noetherian.
(2) If A is right noetherian, then E is an artinian injective cogenerator for
A-modules and it induces a Morita self-duality of A.

Proof: (1) follows from Theorem 2.4. (2) follows from [Ja, 2.2 and 2.7]. |

3. Pre-balanced dualizing complexes

The aim of this section is to prove Theorems 0.1 and 0.2. As usual, A and B
denote semilocal rings with Jacobson radicals m and n respectively. We will use
the truncated Morita dualities given in the previous section. The following is a
key proposition.

PROPOSITION 3.1: Let A and B be semilocal algebras. If R is a pre-balanced
dualizing complex over (A, B), then the functors

{(Ext% (=, R)| 4/mn> Extyo (=, R)|g/un)| 7 > 0}

induces a system of truncated Morita dualities.
If moreover A and B are complete, then

Rl (R) = HY(R) = HY (R) 2 RTye (R).

Further, the Morita duality between A and B induced by the limit of the above
system is given by the bimodule H (R) = HY (R).

Proof: Let el be the essential length defined before Lemma 2.1. Note that an
artinian A-module M is an A/m™-module if and only if el(M) < n.

By definition, if 4M is simple, then Ext% (M, R) is B°-simple. So if el(M) =
1, then el(Ext%(M,R)) = 1. By induction and the fact Ext’(M,R) is exact
on modules of finite length, Ext’(—, R) induces a duality between finite 4/m"-
modules and finite (B/n")°-modules. Therefore the first statement follows.

We now assume A and B are complete. Observe first that RI'y(R) and
RI o (R) have nonzero cohomology in cohomological degree 0 only, since R is pre-
balanced. The pre-balanced condition also shows that H: (R) is right n-torsion
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and Hi. (R) is m-torsion for every i. By [WZ2, 2.6 and 2.7], R['n(R) & RI'yo (R)
as (A, B)-bimodule complexes. Taking 0-th cohomology, we find that

HC (R) = H% (R).

For the final statement note that the system of truncated Morita dualities is
induced by the bimodules

E™ = Ext%(4/m", R) = Ext%.(B/n", R).
By Jategaonkar’s theorem (see Theorem 2.3),
lim E™ = Hy,(R) = Hy» (R)
induces the desired Morita duality. |

Remark 3.2: In [Yel, 4.1], Yekutieli introduced the notion of a balanced dual-
izing complex for a noncommutative graded algebra. There is an obvious gener-
alization of his definition to our setting. Suppose A and B are Morita dual via a
bimodule E. A dualizing complex is said to be balanced with respect to E if

Rl (R) & E = Ry (R)

in D(A ® B®). Proposition 3.1 shows that a pre-balanced dualizing complex is
automatically balanced with respect to its intrinsic Morita duality.

Later in this section, we will introduce a notion of balanced dualizing complexes
which depends only on the algebra [Definition 3.7]. The next lemma shows that
a balanced dualizing complex is pre-balanced.

LEMMA 3.3: Let A and B be complete semilocal algebras and let E be a bimodule
which induces a Morita duality between A and B. If R is a dualizing complex
over (A, B) such that

R (R) = E =2 Rl (R)

in D(A® B®), then R is pre-balanced.

Proof: Let I be a minimal injective resolution of 4R. Then RI'(R) & F implies
that T () = 0 for all i # 0 and T',(1)° & 4E. Hence if S is a simple A-module,
Ext'(S, R) = Ext‘(S,I) = 0 for all i # 0 and Ext®(S, R) = Hom(S, soc(4 E)). By
induction Ext%(—, R) is exact on A-modules of finite length.

Since A and B are Morita dual via E, A/m and B/n are Morita dual via
soc(4F) = soc(Eg). Hence Ext°(S, R) is a finite right B/n-module.
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Similar statements hold for Ext%.(—, R) on B°-modules of finite length. This
shows that Ext®(—, R) induces a duality between the category of A-modules of
finite length and that of B°-modules. Therefore Ext% (S, R) is a simple B°-
module. If T is a simple B°-module, similar statements hold for Ext’. (T, R) by
symmetry. Thus R is pre-balanced. |

The next proposition is a version of local duality for rings with pre-balanced
dualizing complexes. It was proved in the graded case by Yekutieli in [Yel, 4.18].
We will give a new proof here which is comparatively easy. A more general
version appears in [YZ3, 5.2].

PRrROPOSITION 3.4: Let A and B be complete semilocal algebras. If R is a pre-
balanced dualizing complex over (A, B) and E = RI'y(R) = RI'wo(R) as above,
then we have the following isomorphism:

Homy (RTw (M), E) = RHoma (M, R),

which is natural in M € D}(A).
If C is another algebra, then the above isomorphism holds for bounded com-
plexes M of A ® C°-modules whose cohomology is finite over A.

Proof: Note first that there is a natural transformation
®: RHoma(~, R) — Hom4 (R (=), RI'n(R)) =: F

given by applying the functor I'y, to an homomorphism. Let D denote the func-
tor RHoma(—, R) and D° denote RHomgp.(—, R). Now D° is a duality so, in
fact, we need only show DD° = id — FD° is an isomorphism of functors
on bounded complexes of C' @ B°-modules whose cohomology is finite over B°.
Since the restriction from C' @ B°-modules to B°-modules commutes with natural
transformations, it suffices to show that DD° = id — FD° is an isomorphism
of functors on D?(B°). Recall that the dualizing complex R has finite injec-
tive dimension, so both D° and F' are way-out left functors in the sense of [Ha,
p. 68]. Hence FD° is way-out left. By [Ha, 1.7.1(i)] and the dual version of [Ha,
1.7.1(iv)], it suffices to show that this is an isomorphism when evaluated on B.

Now
FD°(B) =RHomy (RI'y (RHomg- (B, R)), RI'n(R))
=RHoma (R (R),RI'n(R)) = RHoma(E,E) = B
as was to be shown. |

Here is a partial converse of Theorem 1.5.
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COROLLARY 3.5: Let A and B be complete semilocal algebras. Let R be a pre-
balanced dualizing complex over (A, B) and let E = RT'n(R) = RI'yo(R) as in
Proposition 3.1. Then

(1) R 2 Homa(RTm(A), E) 2 Hompe (Rl'we (B), E),

(2) cd(A) and cd(B°) are finite,

(3) A and B° satisfy the left x condition.

Proof: We prove only the left-handed statements, the right-handed ones being
symmetric.

{1) This follows by taking M to be the A-bimodule A in Proposition 3.4.

(2) By Proposition 3.4,

Hom (Rl (M), E) = RHoma (M, R)
for finite A-modules M. Since Hom4(—, E) is exact, we have
Homy (R (M), E) = ExtYy (M, R)

for all i. Since Ext’y(M,R) is a finite B°-module, R™T'y,(M) is an artinian
A-module. Therefore [WZ2, 3.3(1)] implies that

Rl (M) = Hompgo (RHomp (M, R), E).

Let inf R = min{i| H'(R) # 0}. For every A-module M and every i < inf R,
Ext% (M, R) = 0, and hence

(3.5.1) R™'T', (M) = Homp. (Ext’, (M, R), E) = 0.

Thus cd(A) is bounded by — inf R.

(3) Let M be a finite A-module. Since Ext};*(M, R) is finite B°-module, the
Morita dual Hompge (Ext;*(M, R), E) is artinian. Then the local duality formula
(3.5.1) implies that RT',(M) is an artinian module for every . Now A and B
are Morita dual so injective hulls of simple A-modules are artinian. Hence we
may apply [WZ2, 2.3] to yield the left x condition. 1

Remark 3.6: 1t follows from Proposition 3.1 and Corollary 3.5(1) that there is a
one-to-one correspondence between the isomorphism classes of the Morita duali-
ties between A and B and the isomorphism classes of the pre-balanced dualizing
complexes over (A, B) (see Proposition 4.7}. If a pre-balanced dualizing complex
R satisfies Corollary 3.5(1), we say that R is associated to E. It is clear that
dualizing complexes associated to E are unique up to isomorphism.
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Proof of Theorem 0.1: (1) was proved in Proposition 3.1 and (2) was proved in
Corollary 3.5. It remains to show (3) and (4).
(3) By (3.5.1),
ExtY (M, R) = Homs(R™I'n (M), E)

for all finite A-module M. Thus
CdimM := — inf{i| Ext’, (M, R) # 0} = sup{i| Rl (M)} =: lcd(M).

If M is an (A, B)-bimodule finite on both sides, then led is symmetric, i.e.,
led(4M) = led(Mp) [WZ2, 2.9]. Thus R is Cdim-symmetric, i.e., Cdim(4M) =
Cdlm(MB)

(4) This follows from Corollary 3.5 and Theorem 1.5. |

Our definition of a balanced dualizing complex in Remark 3.2 depended on the
Morita duality. We wish now to give a definition which depends only on A. To
do so we restrict ourselves to the following situation.

Suppose now that A is a noetherian complete semilocal ring with dimgA/m
finite. Let E™ be the module Homy(A/m™, k) and let E = h_I)nE" It is clear that
each E™ is finite dimensional and that {E"} is a system of truncated injective
modules. By Corollary 2.5(2), 4F 4 induces a Morita self-duality. We consider

E to be the natural choice of Morita duality for A. We can now copy the graded
version of balanced dualizing complexes [Yel, 4.1] to the complete semilocal case.

Definition 3.7: Let A be a noetherian complete semilocal algebra. Suppose A/m
is finite dimensional over k. Let E4 = li_r)nHomk(A/m", k). A dualizing complex

R over A is called balanced if
RI'nw(R) 2 E4 2RIy (R)

in D(A® A°).

It follows from Lemma 3.3 that the balanced condition is stronger than the pre-
balanced condition. As a consequence of Proposition 3.1 and Corollary 3.5(1),
a balanced dualizing complex over A (if it exists) is unique up to isomorphism.
From now on the balanced dualizing complex over A is denoted by R4.

If A is local, then any two Morita self-dualities differ by an antomorphism of
A as the next lemma shows.

LEMMA 3.8: (1) Let C,C’ and B be algebras. Suppose cEp and ¢/ Fp are
bimodules such that the canonical maps C — End(Ep) and C' — End(Fp) are
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isomorphisms. If f: Eg — Fg Is an isomorphism of right B-modules, then f in-
duces an algebra isomorphism ¢: C' — C such that f is a bimodule isomorphism
from ¢CEB —c! Fpg.

(2) Suppose A is a noetherian complete local algebra with dimgA/m < oo. If
an A-bimodule E induces a Morita self-duality, then there is an automorphism
¢ of A such that E = E, as A-bimodules.

Proof: (1) By the canonical homomorphism we may identify C with End(Epg)
and C’' with End(Fg). We define ¢: End(Fg) — End(Eg) by é(a) = f~laf for
all @ € End{Fg). Hence ¢ is an isomorphism of algebras. We now define a left
C’'-module structure on E by

axz = d(a)e(= faf(2)).

By this we see that f is C’-linear. Therefore f is a bimodule isomorphism
d’cEB —cr Fp.

(2) Let E4 be as in Definition 3.7 and let E be another A-bimodule which
induces a Morita self-dual of A. Since A is local, both E and E 4 are the injective
hull of the A°-module A/m. Hence E = E,4 as A°-modules. The assertion now
follows from (1). ]

We now prove Theorem 0.2. The graded version of this was proved by Van
den Bergh [VdB] and partly by Yekutieli [Yel].

COROLLARY 3.9: Let A be a noetherian complete semilocal algebra with A/m
finite dimensional. Then the following are equivalent:

{1) A has a balanced dualizing complex,

(2) A has a pre-balanced dualizing complex,

(3) A satisfies x and cd(A) and c¢d(A°) are finite.
If moreover A is local, then every pre-balanced dualizing complex is isomorphic
to R4 where R4 is the balanced dualizing complex over A.

Proof: (1) = (2) is Lemma 3.3.

(2) = (8) is Corollary 3.5.

(3) => (1) Since A/m is finite dimensional over &, it is weakly symmetric. By
Theorem 1.5, R := Hom4(RI'n(A), E4) is a dualizing complex over A.

It follows from the local duality theorem [WZ2, 3.6(2)] that

Homa (RI'w(R), Ea) @ RHoms(R,R) = A
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in D(A ® A°). Taking Morita duals, we find that
RI'm(R) & E4.

Similarly, R['me (R) & E 4. Therefore R is balanced.

For the last statement, we assume A is local and R4 is a balanced dualizing
complex over A. If R is a pre-balanced dualizing complex over A, then by Corol-
lary 3.5 there is an A-bimodule E, which induces a Morita self-duality of A such
that

R 2 Hom o (R o (A), E).

By Lemma 3.8(2), there is an automorphism ¢ of A such that E =~® E4. Thus

R = Homuo (Rl o (4),? E4) = ®(Hom o (R[ e (A), E4)) = ®Ra. W

4. Applications

In this section, we present some applications of the relation between dualizing
complexes and Morita dualities established in the last section. First we prove
Corollaries 0.3 and 0.4.

An algebra is called Quasi-Frobenius (or QF) if it is artinian and has in-
jective dimension 0. If A is QF, then the bimodule 4 A4 induces a Morita self-
duality. A generalization of QF algebras to higher injective dimension is the so
called Artin-Schelter Gorenstein (or AS-Gorenstein) ring. Recall that a noethe-
rian algebra A is AS-Gorenstein if

(1) A has finite left and right injective dimension d,

(2) For every simple (left) A-module S, Ext’(S,A) = 0 for all i # d and

Ext% (S, A) is a simple right A-module, and

(3) Part (2) holds when ‘left’ and ‘right’ are exchanged.

An artinian (or noetherian) algebra A is QF if and only if it is AS-Gorenstein
of injective dimension 0 [AF, Chapter 30]. We now generalize the fact that every
QF algebra has a Morita self-duality to the higher dimensional case.

Proof of Corollary 0.3:  Since A has finite left and right injective dimension, 4 is
a dualizing complex over A. The AS-Gorenstein condition (2,3) shows that the
complex shift A[d] is pre-balanced dualizing complex over A. Now the assertion
follows from Theorem 0.1(1). |

Since every noetherian local PI algebra with finite injective dimension is AS-
Gorenstein [SZ1, 3.10], we have the following: every complete local noetherian
P1 algebra of finite injective dimension has a Morita self-duality.
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Definition 4.1 ([Ye2] [YZ2]): A dualizing complex R over (A, B) is Auslander
if
(1) for every finite A-module M, every ¢, and every B°-submodule N C
Ext% (M, R) one has j(N) > g,
(2) the same holds after A and B° are exchanged.

By [Le, 4.5] and [YZ2, 2.10], if R is Auslander then Cdim defined in Section 1
is an exact, finitely partitive dimension function (for the definition of dimension
function, see MR, 6.8.4]). An algebra is called Auslander Gorenstein if A
has finite left and right injective dimension and A is an Auslander dualizing
complex over A. If, moreover, A has finite global dimension, then 4 is Auslander
regular.

Levasseur [Le, 4.8] showed that every connected graded or local Auslander
regular algebra is a domain. Yekutieli [YZ2, 6.23] showed that every connected
graded (or filtered) Auslander Gorenstein algebra has a QF ring of fractions. We
now generalize [YZ2, 6.23] to the complete local case.

PROPOSITION 4.2: Let A be a noetherian complete semilocal ring. If A is AS-
Gorenstein and Auslander-Gorenstein of injective dimension d, then the following
hold:

(1) Ifyp is a minimal prime ideal of A, then CdimA/p = d.

(2) A has a QF artinian ring of fractions.

Proof: Since A is AS-Gorenstein, R := A[d] is a pre-balanced dualizing complex
over A. By Theorem 0.1(3), R is Cdimpg-symmetric. Shifting R = A[d] back to A,
the Cdim changes by +d. Hence A is Cdim 4-symmetric. If we let the dimension
function ¢ in [ASZ, Theorem 6.1] be Cdimy, then the Auslander Gorenstein
condition ensures that all the hypotheses of that theorem hold. The assertions
now follow from [ASZ, 6.1]. |

If the algebra is local, then Auslander-Gorenstein implies AS-Gorenstein. The
proof of the graded case [Le, 6.3] can be copied to the local case without any
trouble.

LEMMA 4.3 ([Le, 6.3]): Suppose A is noetherian and local. If A is Auslander-
Gorenstein, then it is AS-Gorenstein.

Corollary 0.4 follows from Proposition 4.2 and Lemma 4.3.

Next is an application of the idea of truncated Morita dualities to the non-
semilocal case. It follows from [WZ2, 5.6] that if A is local and R is a pre-
balanced dualizing complex over (A4, B) then id4 R = id Rg = 0. This condition
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was assumed when we proved the homological identities for non-local noncommu-
tative rings [WZ3]. We now show that this is true for any pre-balanced dualizing
complex. Since we do not assume that A is semilocal, we need a more general
local duality result proved in [YZ3, 5.2].

PROPOSITION 4.4: Let R be a pre-balanced dualizing complex over (A, B). Then
R is normal, in the sense that

id4R=idRp=0.

Proof: We say that an A-module M is torsion if every finite submodule of M has
finite length. When A is semilocal, this agrees with m-torsion. Let M be the full
subcategory of torsion A-modules. The torsion A-modules form a hereditary
torsion class, i.e., it is closed under subquotients, extensions and infinite direct
sums. Hence M is a localizing subcategory of A — Mod. These notions for
B°-modules are defined similarly and the full subcategory of torsion B°-module
is denoted by N.

The torsion functor I' o is defined similarly to I',. A more general version is
given in [YZ3, Section 1].

By [YZ3, (1.1)],

Tm(-) = ll_nleomA(A/a, -)

where a runs over all left ideals of A such that A/a is artinian. Hence
E:=RTy(R) = @Ext‘},(A/a, R).

The pre-balanced condition ensures that Ep is torsion.
Let I be the minimal injective resolution of 4R. Since 4R is pre-balanced,
only I° contains nonzero torsion A-modules. Hence RT \yR = RT\R = E.
Let T be any simple B°-module. It follows from the pre-balanced condition
and the spectral sequence

Ext!, (Ext. (T, R),R) =T

that there is a simple A-module S = A/b such that Ext%(S,R) = T. Since
Ext%(—, R) is exact on artinian modules, if a is a left ideal of A contained in b
such that A/a is artinian then the canonical map Ext% (4/b, R)) — Ext%(A/a, R)
is injective. Since l_n_)n is exact, we obtain an injective map

lim ace Ext%(A4/b, R) — lim ac Ext%(A/a, R),
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where a runs over all left ideals of A contained in b such that A/a is artinian.
The left term is isomorphic to Ext% (A/b, R), which is isomorphic to T, and the
right term is isomorphic to E. Thus T is a submodule of Ep.

The pre-balanced condition ensures that id R > 0. If id4 R =7 > 0, then there
is a finite A-module M such that Ext’ (M, R) # 0. Since Ext%(M, R) is a finite
B°, it has a simple factor, say T. Thus there is a nonzero map

Ext4y(M,R) > T — E

which gives a nonzero element in Extz% (R Homa (M, R), E). By Yekutieli's local
duality [YZ3, 5.2], for any finite A-module M, we have

RIuM = R Homge (RHomy (M, R), RT wR) 2 R Homg. (R Hom4 (M, R), E).

Thus
R™T'mM = Extz: (RHoma(M, R),E) # 0.

This is a contradiction. Therefore id4 R = 0. 1
In the rest of this section we show the statement made in Remark 3.6.

LeEMMA 4.5 ([Xn,4.6]): Suppose A and B are Morita dual via a bimodule 4Ep.
(1) If A’ and A are Morita equivalent via an invertible bimodule 4 P4, then
A’ and B are Morita dual via E' := P @4 E = Homu(P', E) where P' =
HOon (P, A)
(2) If A’ and B are Morita dual via E', then E' = P ®4, E where P =
Hompg- (E, E'). And B and B’ are Morita equivalent via P.

A similar statement holds for dualizing complexes.

LEMMA 4.6: Suppose R is a dualizing complex over (A, B). In part (2) we also
assume that A and B are complete semilocal and are Morita dual via a bimodule
E.

(1) If A’ and A are Morita equivalent via P, then

R = PosR= HOIIIA(PI,R)

is a dualizing complex over (A’, B). If R is pre-balanced, then so is R'.
(2) If R is associated to E, then R’ is associated to E' :== P®4 E.

Proof: (1) Recall that P’ = Homa.(P, A). First note that Homa(P', —) is
naturally isomorphic to P ®4 — because A and A’ are Morita equivalent. If M
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is in D4(A’), then we have

R Hom (M, R') = RHomu (M, Homu (P', R))

(4.6.1)
= RHomA(P' Ra M, R).

This shows that id4 R’ is finite. Other axioms in Definition 1.1 can also be
shown easily for R’ and therefore R’ is a dualizing complex over (A4’, B).

Suppose R is pre-balanced. Let S’ be a simple A’-module. Then S := P'@ 4/ S’
is a simple A-module. Then (4.6.1) shows that Ext%,(S’,R’) = Ext%(S,R).
Therefore Ext*(S’, R') = 0 for all i # 0 and Ext®(S’, R') is a simple B°-module.
Given any finite (or simple) B°-module T', we have

(46.2) RHompe(T,R') = RHompe (T, P @4 R) = P ®4 RHomp(T, R).

This shows the other half of the pre-balanced condition.
(2) Now suppose A and B are complete semilocal. Then so is A’. Suppose R
is associated to E. Let T = B/n™ in (4.6.2); we have

Ext%.(B/n",R') = P ®4 Ext$.(B/n", R).
B

After taking lim, we see that E' = P ®4 E. By Proposition 3.1, A’ and B are
—
Morita dual via E’ and, by Corollary 3.5, R’ is associated to E'. |

PROPOSITION 4.7: Suppose R is a dualizing complex over (A, B) where A and
B are complete semilocal algebras. Then there is a one-to-one correspondence
between the following two classes.

(a) Isomorphism classes of pre-balanced dualizing complexes over (4, B).

(b) Isomorphism classes of bimodules which induce Morita dualities between
A and B.

Proof: For any pre-balanced dualizing complex R in class (a), we define E =
HY(R). By Proposition 3.1, E is in class (b). We know from Corollary 3.5(1)
that this map is one-to-one. To show that the map is onto, we pick any E’ in class
(b). By Lemma 4.5(1), E' = P ®4 E where P is some invertible A-bimodule.
Also, by Lemma 4.6(2) there is an R’ in class (a) which is associated to E’. Thus
the pre-image of E' is R’. |

COROLLARY 4.8: Assume the hypotheses of Proposition 4.7. Suppose A’ and
B’ are Morita equivalent to A and B respectively. Then there is a one-to-one
correspondence between the following two classes.
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(a) Isomorphism classes of pre-balanced dualizing complexes over (A’, B').

(b) Isomorphism classes of bimodules which induce Morita dualities between
A’ and B'.

Proof: The assertion follows from Lemma 4.6 and Proposition 4.7. 1

5. Finite extensions

In this section we prove that the pre-balanced dualizing complex extends for
finite ring extensions. As before we assume that A and B are Morita dual via an
artinian bimodule E. As a consequence, A and B® are left noetherian complete
semilocal algebras.

In this section we also assume that A and B are two-sided noetherian. For
the next construction we further assume that A/m and hence B/n is weakly
symmetric,

We consider a ring extension f : A — A’ which is finite in the sense that A’
is a finite A-module on both sides, and is local in the sense that f(m) C m’ where
m’ denotes the Jacobson radical of A’. These two hypotheses ensure that A’ is
a complete noetherian semilocal ring and that A’/m’ is weakly symmetric. Also,
the local hypothesis shows that the filtrations {A'm"},.en, {m"A'}ren, {M'" }ren
are all cofinal. We wish to study Morita duality for A’.

In general, Morita duality does not behave well even with respect to finite ring
extensions [Xu, 7.5]. This situation is remedied by our assumption that A/m is
weakly symmetric. We will in fact show that

E' := Homu4(A4', F)

induces a Morita duality for A’. First note that by the adjunction formula, the
A'-module E’ is an injective cogenerator. Note that the functor Homa(—, E)
restricts to Hom 4 (—, E') on Mod(A4').

LeEMMA 5.1: Assume the notation given above. Suppose that A/m is weakly
symmetric. Then 4EY is an artinian bimodule.

Proof: Morita duality shows that E’ is artinian over B. We seek to show that
it is artinian over A by showing that it is m-torsion and has finite length socle.
To this end, let f € E' = Homg(A’, E) and note that since A’ is finite over
A,imf C E" := Homy4(A/m", E) for some r. We can choose s € N such that
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A'm® C m"A'. Hence m*®f = 0, showing that E’ is indeed m-torsion. To bound
the socle we note that for s large enough we have

soc E' = Homu(A/m,Homa (4, E))
= Hom,(A'/A'm, E) C Hom4(A'/m* A’ E).

Weak symmetry now ensures that this is finite length. Hence 4E' is indeed
artinian. |

As a consequence, 4/E’ is also artinian. This artinian module E’ does induce
a Morita duality for A’.

LEMMA 5.2: Assume the notation given above. Suppose that A/m is weakly
symmetric. Then E' induces a Morita duality for A'.

Proof: By [Xu, 7.3], we need to show that 44’ and 4E’ are linearly compact
(see [Xu, Section 3| for a definition). Now A’ is linearly compact since it is finite
over A (see [Xu, 3.3]) while E’ is linearly compact since, by [Xu, 3.1], artinian
modules are. |

We let B’ = End 4/ E’ denote the Morita dual of A’ induced by E’ and let n’
be its Jacobson radical. We wish to show that it plays a symmetric role to that
of A. Now B’ is a semilocal ring since B’/n’ is Morita dual to A’/m’ and so
also is semisimple artinian. Note that there is a natural action of B on E’' which
commutes with the action of A’. This induces a natural map g: B — B’. To see
that B’ is a noetherian bimodule over B we consider the following isomorphism
of B-bimodules,

B' ~ Homu(E',Homy (A, E)) ~ Homu(E', E).

Since E’ is an artinian (A, B)-bimodule, [WZ1, 7.6] ensures this last term is
noetherian on both sides. We can compute B'/n’ from [WZ1, 7.2(4)], which
gives

B'/n' = Homa(Homa (A'/w', E'), E').

If we let E' denote Hom(A/m, E), then this last term can be rewritten as
Homy: (Hom4(A'/m’, E'), E') = Homy(Hom 4 (A’ /w/, EY), EY).

This last term is annihilated by n (on both sides), which shows that g(n) C n'.
We have thus proved part 1 of the following.
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PROPOSITION 5.3: Assume the notation above. Suppose that A/m is weakly
symmetric.

(1) The Morita dual B’ is a finite local ring extension of B.

(2) As an (A, B')-bimodule, E' is isomorphic to Hompe (B', E).

Proof: Consider E’ as an (A, B')-bimodule. Then
E' = Homg. (Homu(E', E), E) = Hompge (Hom 4/ (E’, E'), E) = Hompg. (B', E),

where the first equality holds since E’ is an artinian bimodule and hence is E-
reflexive. 1

COROLLARY 5.4: Let A be an AS-Gorenstein noetherian complete semilocal ring.
If A/m is weakly symmetric, then every finite local ring extension of A is left and
right Morita.

Proof: The assertion follows from Corollary 0.3 and Lemma 5.2. |

We say that (A, B, F’') is a finite extension of (A, B, E) if there are algebra
homomorphisms A — A’ and B — B’ such that

(1) A and B are noetherian,

(2) the maps A — A’ and B — B’ are finite and local,

(3) A/m is weakly symmetric,

(4) E' 2 Homy(A', E) as (A, B)-bimodule, and

(5) E' @ Hompg.(B', E) as (A, B')-bimodule.
By Proposition 5.3, when we have a finite local map A — A’ and when A/m
is weakly symmetric, then there are B and E’ such that (A, B’, E’) is a finite
extension of (4, B, E).

Next we show that when (A4, B, E) has a finite extension, the pre-balanced
dualizing complex extends too. The following lemma was proved in {WZ1, 6.5].

LEMMA 5.5: Suppose A is noetherian complete and semilocal and A — A’ is

finite and local. Then Ry, is the restriction of Ry, to D (A').

THEOREM 5.6: Suppose (A’, B',E'} is a finite extension of (A,B,E). If R is
a pre-balanced dualizing complex associated to E, then there is a pre-balanced
dualizing complex R’ over (A', B’} associated to F’'. Further,

R’ =~ RHomu(A4', R)



310 D. CHAN, Q. S. WU AND J. J. ZHANG Isr. J. Math.
holds in D(A’ ® B°) and

R' = RHomg. (B, R)
holds in D(A® (B')°).

Proof: By Corollary 3.5(2), RT';, and RI'; have finite cohomological dimen-
sion, so Lemma 5.5 shows that RI';,: and RI'/o also have finite cohomological
dimension. Also, Corollary 3.5(3) shows that A and B° satisfy the y-condition,
so by Lemma 5.5 and [WZ2, 2.3], so do A’ and (B’)°.

Let F’' be the functor Homyg (RTy (~),E’) and G’ the functor
Homp/ (RTwo (=), E’). Then (F’,G’) are contravariant functors between D{A’)
and D(B’°). From Lemma 5.5 and the fact that Homa(—, E) restricts to
Homa:(—, E'), we see that F := Homy(RI'y(—), E) restricts to F’ when ap-
plied to D*(A’). Similarly G := Hompe (R['ye(—), F) restricts to G'. By local
duality (see Proposition 3.4), F & Homy4(—, R) and G = Homp. (—, R). Hence
(F,G) defines a duality between D%(A) and D%(B°). This restricts to a dual-
ity (F’,G’) between D?(A’) and D’}(B’°), thus verifying condition (D1) in [Mi,
p. 156]. Since RI'yy and RT'yo have finite cohomological dimension, conditions
(D2r) and (D21} of [Mi, p. 156] hold. Therefore A’ and B’ are Morita derived
dual in the sense of [Mi, p. 156]. By [Mi, 3.3], there is a dualizing complex 4/ Up
(or cotilting bimodule complex in Miyachi’s terminology) between A’ and B'.

We now prove that U is pre-balanced. By [Mi, 3.5], the complex U constructed
in [Mi, 3.3] has the following property: for any X € D}(4’),

F'(X) = RHomu/(X,U)

in D(B'°). Let X be a simple A’-module S. Then RHomga/(S,U) =
Homg4/ (S, E'), which is a simple right B’-module. This shows half of the pre-
balanced condition. The other half follows from the double Ext spectral se-
quence [YZ2, 1.7]. Therefore U is pre-balanced. By Proposition 4.7, there is a
pre-balanced dualizing complex R’ associated to E'.

Finally, by local duality Corollary 3.5(1) and Proposition 3.4,

R’ = RHomy (er/ (AI), E/) = RHomA(RFm(A'), By~ RHOmA(A', R)

in D(A’ @ B°). The other formula holds similarly. 1

Let us mention two special cases. The first case is when A’ is a factor ring
of A.
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LEMMA 5.7 ([AF, 24.6)): Suppose A and B are Morita dual via a bimodule E.
Then there is an isomorphism ¢ from the lattice of ideals of A to the lattice of
ideals of B. Further, if I is an ideal of A and J = ¢(I), then A/I and B/J are
Morita dual via the bimodule

E' := Homa(A/I, E) = Homp. (B/J, E).
In particular, if A and B are noetherian and A/m is weakly symmetric, then
(A/I1,B/J,E') is a finite extension of (A, B, E).
The next result is an immediate consequence of Theorem 5.6.

COROLLARY 5.8: Let (A/I,B/J,E') be as in Lemma 5.7. Suppose R is a pre-
balanced dualizing complex over (A, B) associated to E. Then there is a pre-
balanced dualizing complex over (A/I, B/J) associated to E'. Further,

R = RHomy(A/I, R) = RHomps(B/J, R)

in D(A® B°).

The second case is when A/m is finite dimensional over k. The following is not
hard to check and the proof is omitted.

LEMMA 5.9: Let A be a noetherian complete semilocal algebra such that A/m is
finite dimensional. Let E4 = li_r)nHomk(A/m", k). Let (A, A, E4) be the Morita
duality.

(1) If M is a finite A-module, then

HOInA(M, EA) = ljr_l)lHomk(A/m" Qa4 M, k)
(2) If M is an artinian A-module, then
Homy (M, E4) = l(iLnHomk(HomA(A/m",M),k).

(3) If A — C is a finite local map, then (C,C,E¢) is a finite extension of
(A, A, Ey).

(4) If C = A/I for some ideal I, then ¢(I) = I (where ¢ is the map described
in Lemma 5.7). And

EC = HOmA(A/I, EA) = HOon (A/I, EA)

The following corollary follows from Theorem 5.6 and Lemma 5.9.
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COROLLARY 5.10: Let A be a noetherian complete semilocal algebra such that
A/m is finite dimensional. Let R4 be a balanced dualizing complex over A. If
A — C is a finite local map, then C has a balanced dualizing complex R and

RC = RHOIIIA(C, RA) = RHoon(C, RA)
in D(A® A°).
Corollary 0.5 is a special case of Corollary 5.10.

ACKNOWLEDGEMENT: This research was done during the second author’s visit
to the Department of Mathematics at the University of Washington supported by
a research fellowship from the China Scholarship Council and he thanks these two
institutions for their hospitality and support. The third author was supported in
part by the NSF, a Sloan Research Fellowship, and the Royalty Research Fund
of the University of Washington.

References

[AF] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Second
edition, Graduate Texts in Mathematics 13, Springer-Verlag, New York, 1992.

[ASZ] K. Ajitabh, S. P. Smith and J. J. Zhang, Auslander-Gorenstein rings, Commu-
nications in Algebra 26 (1998), 2159-2180.

[Ch]  D. Chan, Noncommutative rational double points, PhD. thesis, MIT, 1999.

[Co]  P. M. Cohn, Quadratic extensions of skew fields, Proceedings of the London
Mathematical Society (3) 11 (1961), 531-556.

[GW] K. R. Goodearl and R. B. Warfield, Jr., An Introduction to Noncommutative
Noetherian Rings, London Mathemtical Society Student Texts, Vol. 16,
Cambridge University Press, Cambridge, 1989.

[Ha] R. Hartshorne, Residues and Duality, Lecture Notes in Mathematics 20,
Springer-Verlag, Berlin, 1966.

[Ja] A. V. Jategaonkar, Morita duality and Noetherian rings, Journal of Algebra 69
(1981), 358-371.

[Jol] P. Jgrgensen, Local cohomology for non-commutative graded algebras,
Communications in Algebra 25 (1997), 575-591.

[Jo2] P. Jgrgensen, Serre-duality for Tails(A), Proceedings of the American
Mathematical Society 125 (1997), 709-716.

[Jo3] P. Jprgensen, Non-commutative graded homological identities, Journal of the
London Mathematical Society 57 (1998), 336-350.



Vol. 132, 2002 PRE-BALANCED DUALIZING COMPLEXES 313

(Le]
[MR]
[Mu]
(Mi]
[Sc]
[SZ1]

[S22)

[VdB]

(Wz1]
[WZ2]
(Wz3]
[Xu]
[Yel]
[Ye2]

[Ye3]

[YZ1]

[YZ2]

T. Levasseur, Some properties of noncommutative regular rings, Glasgow
Mathematical Journal 34 (1992), 277-300.

J. C. McConnell and J. C . Robson, Noncommutative Noetherian Rings, Wiley,
Chichester, 1987.

B. J. Miiller, On Morita duality, Canadian Journal of Mathematics 21 (1969),
1338-1347.

J. Miyachi, Derived categories and Morita duality theory, Journal of Pure and
Applied Algebra 128 (1998), 153-170.

A. H. Schofield, Stratiform simple Artinian rings, Proceedings of the London
Mathematical Society (3) 53 (1986), 267-287.

J. T. Stafford and J. J. Zhang, Homological properties of (graded) noetherian
PI rings, Journal of Algebra 168 (1994), 988-1026.

J. T. Stafford and J. J. Zhang, Examples in non-commutative projective
geometry, Mathematical Proceedings of the Cambridge Philosophical Society
116 (1994), 415-433.

M. Van den Bergh, Existence theorems for dualizing complexes over non-
commutative graded and filtered rings, Journal of Algebra 195 (1997), 662-
679.

Q. S. Wu and J. J. Zhang, Some homological invariants of local PI algebras,
Journal of Algebra 225 (2000), 904-935.

Q. S. Wu and J. J. Zhang, Dualizing complexes over noncommutative local
algebras, Journal of Algebra 239 (2001), 513-548.

Q. S. Wu and J. J. Zhang, Homological identities for noncommutative rings,
Journal of Algebra 242 (2001), 516-535.

W. Xue, Rings with Morita Duality, Lecture Notes in Mathematics 1528,
Springer-Verlag, Berlin, 1992.

A. Yekutieli, Dualizing complexes over noncommutative graded algebras,
Journal of Algebra 153 (1992}, 41-84.

A. Yekutieli, The residue complex of a noncommutative graded algebra, Journal
of Algebra 186 (1996), 522-543.

A. Yekutieli, Dualizing complexes, Morita equivalence and the derived Picard
group of a ring, Journal of the London Mathematical Society (2) 60 (1999),
723-746.

A. Yekutieli and J. J. Zhang, Serre duality for noncommutative projective
schemes, Proceedings of the American Mathematical Society 125 (1997), 697—
707.

A. Yekutieli and J. J. Zhang, Rings with Auslander dualizing complexes, Journal
of Algebra 213 (1999), 1-51.



314 D. CHAN, Q. S. WU AND J. J. ZHANG Isr. J. Math.

[YZ3] A. Yekutieli and J. J. Zhang, Residue complexes over noncomrmutative rings,
Algebras and Representation Theory, to appear.

[YZ4] A. Yekutieli and J. J. Zhang, Multiplicity of injective modules, preprint (2001).



